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Abstract

Our sense of hearing is mediated by sensory hair cells, precisely arranged and highly spe-

cialized cells subdivided into outer hair cells (OHCs) and inner hair cells (IHCs). Light

microscopy tools allow for imaging of auditory hair cells along the full length of the cochlea,

often yielding more data than feasible to manually analyze. Currently, there are no widely

applicable tools for fast, unsupervised, unbiased, and comprehensive image analysis of

auditory hair cells that work well either with imaging datasets containing an entire cochlea or

smaller sampled regions. Here, we present a highly accurate machine learning-based hair

cell analysis toolbox (HCAT) for the comprehensive analysis of whole cochleae (or smaller

regions of interest) across light microscopy imaging modalities and species. The HCAT is a

software that automates common image analysis tasks such as counting hair cells, classify-

ing them by subtype (IHCs versus OHCs), determining their best frequency based on their

location along the cochlea, and generating cochleograms. These automated tools remove a

considerable barrier in cochlear image analysis, allowing for faster, unbiased, and more

comprehensive data analysis practices. Furthermore, HCAT can serve as a template for

deep learning-based detection tasks in other types of biological tissue: With some training

data, HCAT’s core codebase can be trained to develop a custom deep learning detection

model for any object on an image.

Introduction

The cochlea is the organ in the inner ear responsible for the detection of sound. It is tonotopi-

cally organized in an ascending spiral, with mechanosensitive sensory cells responding to

high-frequency sounds at its base and low-frequency sounds at the apex. These mechanically

sensitive cells of the cochlea, known as hair cells, are classified into two functional subtypes:

outer hair cells (OHCs) that amplify sound vibrations and inner hair cells (IHCs) that convert

these vibrations into neural signals [1]. Each hair cell carries a bundle of actin-rich microvil-

lus-like protrusions called stereocilia. Hair cells are regularly organized into one row of IHCs
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and three (rarely four) rows of OHCs within a sensory organ known as the organ of Corti [2].

The OHC stereocilia bundles are arranged in a characteristic V-shape and are composed of

thinner stereocilia as compared to those of IHCs. Hair cells are essential for hearing, and deaf-

ness phenotypes are often characterized by their histopathology using high-magnification

microscopy. The cochlea contains thousands of hair cells, organized over a large spatial area

along the length of the organ of Corti. During histological analysis, each of these thousands of

cells represents a datum that must be parsed from the image by hand ad nauseam. To accom-

modate for manual analysis, it is common to disregard all but a small subset of cells, sampling

large datasets in representative tonotopic locations (often referred to as base, middle, and apex

of the cochlea). To our knowledge, there are two existing automated hair cell counting algo-

rithms to date, both of which have been developed for specific use cases, largely limiting their

application for the wider hearing research community. One such algorithm by Urata et al [3]

relies on the homogeneity of structure in the organ of Corti and fails when irregularities, such

as four rows of OHCs, are present. It is worth noting however, that their algorithm enables

hair cell detection in 3D space, which may be critical for some applications [4]. Another algo-

rithm, developed by Cortada et al [5] does not differentiate between IHCs and OHCs. Thus,

each were limited in their application, likely impeding their widespread use [3,5]. The slow

speed and tedium of manual analysis poses a significant barrier when faced with large datasets,

be that analyzing whole cochlea instead of sampling three regions, or those generated through

studies involving high-throughput screening [6,7]. Furthermore, manual analyses can be

fraught with user error, biases, sample-to-sample inconsistencies, and variability between indi-

viduals performing the analysis. These challenges highlight a need for unbiased, automated

image analysis on a single-cell level across the entire frequency spectrum of hearing.

Over the past decade, considerable advancements have been made in deep learning

approaches for object detection [8]. The predominant approach is Faster R-CNN [9], a deep

learning algorithm that quickly recognizes the location and position of objects in an image.

While originally designed for use with images collected by conventional means (camera), there

has been success in applying the same architecture to biomedical image analysis tasks [10–12].

This algorithm can be adapted and trained to perform such tasks orders of magnitude faster

than manual analysis. We have created a machine learning-based analysis software that quickly

and automatically detects each hair cell, determines its type (IHC versus OHC), and estimates

cell’s best frequency based on its location along the cochlear coil. Here, we present a suite of

tools for cochlear hair cell image analysis, the hair cell analysis toolbox (HCAT), a consolidated

software that enables fully unsupervised hair cell detection and cochleogram generation.

Results

Analysis pipeline

HCAT combines a deep learning algorithm, which has been trained to detect and classify

cochlear hair cells, with a novel procedure for cell frequency estimation to extract information

from cochlear imaging datasets quickly and in a fully automated fashion. An overview of the

analysis pipeline is shown in Fig 1. The model accepts common image formats (tif, png, and

jpeg), in which the order of the fluorescence channels within the images, or their assigned

color, does not affect the outcome. Multi-page tif images are automatically converted to a 2D

maximum intensity projection. When working with large confocal micrographs, HCAT ana-

lyzes small crops of the image and subsequently merges the results to form a contiguous detec-

tion dataset. These cropped regions are set to have 10% overlap along all edges, ensuring that

each cell is fully represented at least once. Regions that do not contain any fluorescence above

a certain threshold may be optionally skipped, increasing speed of large image analysis while
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files. All code has been hosted on github and is

available for download at https://github.com/

indzhykulianlab/hcat along with accompanying

documentation at https://hcat.readthedocs.io/ The

EPL cochlea frequency ImageJ plugin is available

for download at: https://www.masseyeandear.org/

research/otolaryngology/eaton-peabody-

laboratories/histology-core.
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Fig 1. HCAT analysis pipeline. An early postnatal wild-type mouse cochlea, dissected in a single contiguous piece,

imaged at high magnification (288 nm/px resolution) (A) is broken into smaller 256 × 256 px regions and sequentially

evaluated by a deep learning detection and classification algorithm (B) to predict the probable locations of IHCs and

OHCs (C). The entire cochlea is then used to infer each cell’s best frequency along the cochlear coil. First, all supra-

threshold anti-MYO7A-positive pixels are converted to polar coordinates (D) and fit by the Gaussian process

nonlinear curve fitting algorithm (E). The resulting curve is converted back to cartesian coordinates and the resulting

line is converted to frequency by the Greenwood function; the apical end of the cochlea (teal circle) is inferred by the

region of greatest curl (F), and the opposite end of the cochlea is assigned as the basal end (red circle). Cells are then

assigned a best frequency based on their position along the predicted curve, and cochleograms (G) are generated in a

fully automated way for each cell type (IHCs and OHCs), with a bin size by default set to 1% of the total cochlear

length. HCAT, hair cell analysis toolbox; IHC, inner hair cell; OHC, outer hair cell.

https://doi.org/10.1371/journal.pbio.3002041.g001
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limiting false positive errors. When the entire cochlea is contained as a contiguous piece (Fig

1A), which is common for neonatal cochlear histology, HCAT will estimate the cochlear path

and each cell will be assigned a best frequency. Following cell detection and best frequency

estimation, HCAT performs two post processing steps to refine the output and improve overall

accuracy. First, cells detected multiple times are identified and removed based on a user-

defined bounding box overlap threshold, set to 30% by default. The second step, optional and

only applicable for whole cochlear coil analysis, removes cells too far from the estimated

cochlear path, reducing false positive detections in datasets with suboptimal anti-MYO7A

labeling outcomes, such as high background fluorescence levels or instances of nonspecific

labeling away from the organ of Corti. As outlined below, for each detection analysis HCAT

outputs diagnostic images with overlaid cell-specific data, in addition to an associated CSV

data table, enabling further data analysis or downstream post processing, and, when applicable,

automatically generates cochleograms.

HCAT is computationally efficient and can execute detection analysis on a whole cochlea

on a timescale vastly faster than manual analysis, regularly completing in under 90 s when uti-

lizing GPU acceleration on affordable computational hardware. HCAT is available in two user

interfaces: (1) a command line interface that offers full functionality, including cell frequency

estimation and batch processing of multiple images or image stacks across multiple folders;

and (2) a graphical user interface (GUI), which is user-friendly and is optimized for analysis of

individual or multiple images contained within a single folder. The GUI is unable to infer cell’s

best frequency and is suitable for analysis of small regions of cochlea.

Detection and classification

To perform cell detection, we leverage the Faster R-CNN [9] deep learning algorithm with a

ConvNext [13] backbone trained on a varied dataset of cochlear hair cells from multiple spe-

cies, at different ages, and from different experimental conditions (Table 1, Fig 2). Most of the

hair cells used to train the detection model were stained with two markers: (1) anti-MYO7A, a

hair cell specific cell body marker; and (2) the actin label, phalloidin, to visualize the stereocilia

bundle. Bounding boxes for each cell along with class identification labels were manually gen-

erated to serve as the ground truth reference by which we trained the detection model (Fig 2).

Boxes were centered around stereocilia bundles and included the hair cell cuticular plate as

Table 1. Summary of training data.

Laboratory Number of

images

OHC IHC Animal Microscope Treatment Age Labeled Protein

Artur Indzhykulian, PhD 45 12,959 3,706 Mouse Confocal None P5-P7 MYO7A Actin

Lisa Cunningham, PhD and

Katharine Fernandez, PhD

77 3,424 1,290 Mouse Confocal Platinum

Compounds

18–24

wk

MYO7A Actin

Albert Edge, PhD 2 125 42 Mouse Confocal None 8 wk MYO7A Actin

M. Charles Liberman, PhD 29 894 290 Human Confocal None Adult MYO7A ESPN

Guy Richardson, PhD and

Corne Kros, PhD

26 1,226 690 Mouse Epifluorescence Aminoglycosides P2-P3 MYO7A Actin

Mark Rutherford, PhD 5 120 65 Mouse Confocal None P30 MYO7A Actin

Anthony Ricci, PhD 3 120 43 Mouse Confocal None Adult MYO7A Actin

Basile Tarchini, PhD 8 292 97 Mouse Confocal None P21-P22 MYO7A Actin

Bradley Walters, PhD 6 904 238 Guinea Pig Confocal None Adult MYO7A Actin

Total 201 20,064 6,461

IHC, inner hair cell; OHC, outer hair cell.

https://doi.org/10.1371/journal.pbio.3002041.t001
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these were determined the most robust features per cell in a maximum intensity projection

image. The trained Faster R-CNN model predicts three features for each detected cell: a

bounding box, a classification label (IHC or OHC), and a confidence score (Fig 3).

To limit false positive detections, cells predicted by Faster R-CNN can be rejected based on

their confidence score or their overlap with another detection through an algorithm called non-

maximum suppression (NMS). To find optimal values for the confidence and overlap thresholds,

we performed a grid search by which we assessed model performance at each combination of val-

ues and selected values leading to most accurate model performance (Figs 3E–3G and S1).

The trained Faster R-CNN detection algorithm performs best on maximum intensity pro-

jections of 3D confocal z-stacks of hair cells labeled with a cell body stain (such as anti-

MYO7A) and a hair bundle stain (such as phalloidin), imaged at a X-Y resolution of approxi-

mately 290 nm/px (Fig 4D and 4E). However, the model can perform well with combinations

of other markers, including antibody labeling against ESPN, Calbindin, Calcineurin, p-

AMPKα, as well as following FM1-43 dye loading. HCAT can accurately detect cells in healthy

and pathologic cochlear samples, collected within a range of imaging modalities, resolutions,

and signal-to-noise ratios. While the pixel resolution requirements for the imaging data are

not very demanding, imaging artifacts and low fluorescence signal intensity can limit detection

accuracy. Although there is one row of IHCs and three rows of OHCs in most cochlear sam-

ples, there are rare instances where two rows of IHCs or four rows OHCs can be seen in nor-

mal cochlear samples, the algorithm is robust and largely accurate in such instances (Fig 4D).

Cochlear path determination

For images containing an entire contiguous cochlear coil, HCAT can additionally predict cell’s

best frequency via automated cochlear path determination. To do this, HCAT fits a Gaussian

Fig 2. HCAT detection algorithm training data. Early postnatal, wild-type murine hair cells in whole cochlea stained against

MYO7A (blue) and phalloidin (magenta) were manually annotated by placing either yellow (OHC) or white (IHC) boxes

around each stereocilia bundle (A–D) and used as training data for the Faster R-CNN deep learning algorithm. All annotated

boxes appear as a thin, pale green strip when rendered in (A). Hair cells vary in appearance based on tonotopy, with

representative regions of the base (B), middle (C), and apex (D) shown here. Since the boundaries between hair cell cytosol

(blue) overlap in maximum intensity projection images (E), the bounding boxes for each cell were annotated around the

stereocilia bundle and cuticular plate of each hair cell (F). HCAT, hair cell analysis toolbox; IHC, inner hair cell; OHC, outer

hair cell.

https://doi.org/10.1371/journal.pbio.3002041.g002
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process nonlinear regression [14] through the ribbon of anti-MYO7A-positive pixels, effec-

tively treating each hair cell as a point in cartesian space. A line of best fit can be predicted

through each hair cell and in doing so approximate the curvature of the cochlea. The length of

this curve is then used as an approximation for the length of the cochlear coil. For example, a

cell that is 20% along the length of this curve could be interpreted as one positioned at 20%

along the length of the cochlea, assuming the entire cochlear coil was imaged.

To optimally perform the initial regression, individual cell detections are rasterized and

then downsampled by a factor of ten using local averaging (increasing the execution speed of

this step), then converted to a binary image. Next, a binary hole closing operation is used to

close any gaps, and subsequent binary erosion is used to reduce the effect of nonspecific stain-

ing. Each positive binary pixel of the resulting 2D image is then treated as an X/Y coordinate

that may be regressed against (Fig 1D). The resulting image is unlikely to form a mathematical

function in cartesian space, as the cochlea may curve over itself such that for a single location

on the X axis, there may be multiple clusters of cells at different Y values. To rectify this over-

lap, the data points are converted from cartesian to polar coordinates by shifting the points

and centering the cochlear spiral around the origin, then converting each X/Y coordinate to a

corresponding angle/radius coordinate. As the cochlea is not a closed loop, the resulting curve

will have a gap, which is then detected by the algorithm, shifting these points by one period,

and creating a continuous function. A Gaussian process [14], a generalized nonlinear function,

is then fit to the polar coordinates and a line of best fit is predicted. This line is then converted

back to cartesian coordinates and scaled up to correct for the earlier down-sampling (Fig 1E).

The apex of the cochlea is then inferred by comparing the curvature at each end of the line

of best fit based on the observation that the apex has a tighter curl when mounted on a slide.

Fig 3. Schematized overview of Faster R-CNN image detection backend. (A) Input micrographs (in this case, of early

postnatal mouse hair cells) are encoded into high-level representations (schematized in (B)) by a trained encoding

convolutional neural network. These high-level representations are next passed to a region proposal network that predicts

bounding boxes of objects ((C), schematized representation). Based on the predicted object proposals, encoded crops are

classified into OHC and IHC classes by the neural network and assigned a confidence score (D). Next, a rejection step

thresholds the resulting predictions based on confidence scores and the overlap between boxes, via NMS. Default values for

user-definable thresholds were determined by the maximum average precision after a grid search of parameter combinations

over eight manually annotated cochleae (E). The outcome of this grid search can be flattened into accuracy curves for the

NMS (F) and rejection threshold (G) at their respective maxima. Boxes remaining after rejection represent the models’ best

estimate of each detected object in the image (H). IHC, inner hair cell; NMS, non-maximum suppression; OHC, outer hair

cell.

https://doi.org/10.1371/journal.pbio.3002041.g003
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Fig 4. Validation output of early postnatal wild-type mouse hair cell detection analysis. A validation output image is generated for each detection analysis

performed by the software. An image is automatically generated by the software similar to the one shown here for a dataset that includes an entire cochlea (A),

with the vast majority of cells accurately detected (B). For each image, the model embeds information on cell’s ID, its location along the cochlear coil (distance

in μm from the apex), its best frequency, cell classification (IHC as yellow squares, OHC as green circles), and the line that represents tool’s cochlear path

estimation ((C), blue line). The very few examples of poor performance are highlighted in (D) and (E) (arrowheads point to three missed IHCs and two OHCs).

A set of cochleograms reporting cell counts per every 1% of total cochlear length, generated with manual cell counts and frequency assignment (gray) closely

agrees with an HCAT-predicted cochleogram (red) generated in a fully automated fashion (F). HCAT is accurate along the entire length of the cochlea (G), as

evident by assessing the accuracy with a bin size of 10% of cochlear length. To assess the accuracy of the tool’s best frequency assignment, the magnitude

difference between every cell’s best frequency calculated manually, and automatically, with respect to frequency for eight different cochleae is at maximum 15%

of an octave across all frequencies (H). Each color represents one cochlea. HCAT, hair cell analysis toolbox; IHC, inner hair cell; OHC, outer hair cell.

https://doi.org/10.1371/journal.pbio.3002041.g004

PLOS BIOLOGY HCAT: A machine learning-based whole cochlea analysis tool

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002041 March 22, 2023 7 / 17

https://doi.org/10.1371/journal.pbio.3002041.g004
https://doi.org/10.1371/journal.pbio.3002041


The resulting curve closely tracks the hair cells on the image. Next, the curve’s length is mea-

sured, and each detected cell is then mapped to it as a function of the total cochlear length (%).

Each cell’s best frequency is calculated using the Greenwood function, a species-specific

method of determining cell’s best frequency from its cochlear position [15] (Fig 1F). Upon

completion of this analysis, the automated frequency assignment tool generates two cochleo-

grams, one for IHCs and one for OHCs (Fig 1G).

To validate this method of best frequency assignment, we compared it to the existing stan-

dard in the field—manual frequency estimation. We manually mapped the cochlear length to

cochlear frequency using a widely used ImageJ plugin, developed by the Histology Core at the

Eaton-Peabody Laboratories (Mass Eye and Ear) and compared them to the results predicted

by our automatic tool (Figs 4G and S1). Over 8 manually analyzed cochleae, the maximum

cell frequency error of automated, relative to a manually, mapped best frequency was under

15% of an octave, with the discrepancy between the two methods less than 5% for most cells

(60% of a semitone). In one cochlea, the overall cochlear path was predicted to be shorter than

manually assigned, due to the threshold settings of the MYO7A fluorescence channel, causing

an error at very low and very high frequencies (Fig 4G, dark blue). While this error was less

than 15% of an octave, it is an outlier in the dataset. It is recommended, when using this tool,

to evaluate the automated cochlear path estimation, and if poor, perform manual curve anno-

tation to facilitate best frequency assignment. If required, the user is also able to switch the des-

ignation of automatically detected points representing the apical and basal ends of the cochlear

coil (Fig 1F, red and cyan circles).

Performance

Overall, cochleograms generated with HCAT track remarkably well to those generated manu-

ally (Fig 4F). Comparing HCAT to manually annotated cochlear coils (not used to train the

model), we report a 98.6 ± 0.005% true positive accuracy for cell identification and a<0.01%

classification error (8 cochlear coils, 4,428 IHCs and 15,754 OHCs; S1 Fig). We found no bias

in accuracy with respect to estimated best frequency. To assess HCAT performance on a diverse

set of cochlear micrographs, we sampled 88 images from 15 publications [16–30] that represent

a wide variety of experimental conditions, including ototoxic treatment using aminoglycosides,

genetic manipulations that could affect the hair cell anatomy, noise exposure, blast trauma, and

age-related hearing loss (Table 2). We performed a manual quantification and automated

detection analysis of these images after they were histogram-adjusted and scaled via the HCAT

GUI for optimal accuracy. HCAT achieved an overall OHC detection accuracy of 98.6 ± 0.5%

and an IHC detection accuracy of 96.9 ± 2.8% for 3,545 OHCs and 1,110 IHCs, with mean

error of 0.34 OHC and 0.32 IHC per image. Of the 88 images we used for this validation, no

errors were detected on 62 of them, and HCAT was equally accurate in images of low and high

absolute cell count (Fig 5). Multi-piece cochleogram generation workflow is shown in (S3 Fig).

Validation on published datasets

We further evaluated HCAT on whole, external datasets (generously provided by the Cun-

ningham [31], Richardson and Kros laboratories [7]) and replicated analyses from their publi-

cations. Each dataset presented examples of organ of Corti epithelia treated with ototoxic

compounds resulting in varying degrees of hair cell loss. The two datasets complement each

other in several ways, covering most use cases of data analysis needs following ototoxic drug

use in the organ of Corti to assess hair cell survival: in vivo versus in vitro drug application,

confocal fluorescence versus widefield fluorescence microscopy imaging, early postnatal versus

adult organ of Corti imaging. HCAT succeeded in quantifying the respective datasets in a fully
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Table 2. Summary of micrographs sampled from existing publications to test HCAT performance.

Laboratory Number of

images

OHC IHC Animal Microscopy Treatment Age Extent loss Labeled protein

Beurg and colleagues, 2019 [16] 2 39 17 Mouse Confocal Tmc1p.D569N mouse 4 wk — Calbindin Actin

Fang and colleagues, 2019 [17] 1 42 14 Mouse Confocal WT mouse 6–8 wk — MYO7A Actin

Fu and colleagues, 2021 [18] 6 175 69 Mouse Confocal Klc2-/- mouse P50 — MYO7A Actin

Gyorgy and colleagues, 2019 [19] 11 330 113 Mouse Confocal Tmc1Bth mutant 24 wk — MYO7A Actin

He and colleagues, 2021 [20] 7 304 69 Mouse Confocal Noise trauma 14 wk 0% Calcineurin;

4-HNE

Actin

Hill and colleagues, 2016 [21] 5 171 0 Mouse Confocal Noise trauma 16 wk 0% p-AMPKα Actin

Kim and colleagues, 2018 [22] 3 102 33 Mouse Confocal Blast trauma 6 wk 0–55% MYO7A Actin

Lee and colleagues, 2017 [23] 2 24 7 Mouse Confocal WT mouse E12-E17 — MYO7A Actin

Li and colleagues, 2020 [24] 2 70 21 Mouse Confocal Myo7a-ΔC mouse 9 wk — MYO7A Actin

Mao and colleagues, 2021 [25] 9 916 311 Mouse Confocal Blast trauma 10 wk 0–69% MYO7A Actin

Sang and colleagues, 2015 [26] 6 193 65 Mouse Confocal Idlr1-/- mouse P28 — MYO7A Actin

Sethna and colleagues, 2021 [27] 7 274 104 Mouse Confocal Pcdh15R250X mouse P60 — MYO7A Actin

Wang and colleagues, 2011 [28] 2 90 26 Mouse Confocal SCX-/- mouse P18 — MYO7A Actin

Yousaf and colleagues, 2015 [29] 24 760 244 Mouse Confocal Map3k1tm1Yxia P90 — MYO7A Actin

Zhao and colleagues, 2021 [30] 1 55 17 Mouse Confocal Clu-/- mouse 9mo — MYO7A Actin

Total 88 3,545 1,110

HCAT, hair cell analysis toolbox; IHC, inner hair cell; OHC, outer hair cell.

https://doi.org/10.1371/journal.pbio.3002041.t002

Fig 5. HCAT detection performance on published images of cochlear hair cells. HCAT detection performance was assessed by

running a cell detection analysis in the GUI on 88 confocal images of cochlear hair cells sampled from published figures across 15

different original studies [16–30]. None of the images from this analysis were used to train the model. Each image was adjusted within

the GUI for optimal detection performance. Cells in each image were also manually counted (presented as ground truth values) and

results compared to HCAT’s automated detection. The resulting population distributions of hair cells are compared for OHCs (A), and

IHCs (B). The mean difference in predicted number of IHCs (open circles) and OHCs (filled circles) in each publication is summarized

for each cell type: zero indicates an accurate detection, negative values indicate false negative detections, while positive values indicate

false positive detections (C). GUI, graphical user interface; HCAT, hair cell analysis toolbox; IHC, inner hair cell; OHC, outer hair cell.

https://doi.org/10.1371/journal.pbio.3002041.g005
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automated fashion with an accuracy sufficient to replicate the main finding in each study (Fig

6), underestimating the total number of cells for Gersten and colleagues, 2020 by 7.3%, and

overestimating the total number of cells from Kenyon and colleagues, 2021 by 1.47%. It is

worth noting that these datasets were collected without optimization for an automated analy-

sis. Thus, we expect an even higher performance accuracy with an experimental design opti-

mized for HCAT-based automated analysis.

Discussion

Here, we present the first fully automated cochlear hair cell analysis pipeline for analyzing

multiple micrographs of cochleae, quickly detecting and classifying hair cells. HCAT can

Fig 6. Evaluation of HCAT performance on cochlear datasets to assess ototoxic drug effect. To assess HCAT performance on

aberrated cochlear samples, we compared HCAT analysis results to manual quantification on datasets from two different

publications focused on assessing hair cell survival following treatment with ototoxic compounds. (A) Original imaging data of P3

CD1 mouse cochlea, underlying the finding in Fig 2F of Kenyon and colleagues, 2021 [7], generously provided by the Richardson

and Kros laboratories. Images were collected using epifluorescence microscopy, following a 48-h incubation in either 0 μm

gentamicin (Control), 5 μm gentamicin, or 5 μm gentamicin + 50 μm test compound UoS-7692. Each symbol represents the

number of OHCs in a mid-basal region from 1 early postnatal in vitro cultured cochlea [7]. One-way ANOVA with Tukey’s multiple

comparison tests. ***, p< 0.001; ns, not significant. In some cases, HCAT detections overestimated the total number of surviving

hair cells in the gentamycin-treated tissue. However, overall, the software-generated results are in agreement with those of the

original study, drawing the same conclusion. (B) Original imaging data of adult mouse cochleae, underlying the finding in Fig 7A-B

in Gersten and colleagues, 2020 [31] were generously provided by the Cunningham laboratory. In this study, mice were treated by in

vivo application of clinically proportional levels of ototoxic compounds, Cisplatin, Carboplatin, Oxaliplatin, and Saline (control), in

an intraperitoneally cyclic delivery protocol [31]. Regions of interest were imaged at the base, middle, and apex of each cochlea.

HCAT’s automated detections were comparable to manual quantification and were sufficient to draw a conclusion that is consistent

with the original publication. Upon comparison, HCAT had higher detection accuracy in OHCs, compared to IHCs, likely due to

the variability of the MYO7A fluorescence intensity levels in IHCs across the dataset. HCAT, hair cell analysis toolbox; IHC, inner

hair cell; OHC, outer hair cell.

https://doi.org/10.1371/journal.pbio.3002041.g006
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analyze whole cochleae or individual regions and can be easily integrated into existing experi-

mental workflows. While there were previous attempts at automating this analysis, each were

limited in their use to achieve widespread application [3,5]. HCAT allows for unbiased, auto-

mated hair cell analysis with detection accuracy levels approaching that of human experts at a

speed so significantly faster that it is desirable even with rare errors. Furthermore, we validate

HCAT on data from various laboratories and find it is accurate across different imaging

modalities, staining, age, and species.

Deep learning-based detection infers information from the pixels of an image to make deci-

sions about what objects are and where they are located. To this end, the information is devoid

of any context. HCAT’s deep learning detection model was trained largely using anti-MYO7A

and phalloidin labels; however, the model can perform on specimens labeled with other mark-

ers, as long as they are visually similar to examples in our training data. For example, some of

the validation images of cochlear hair cells sampled from published figures contained cell body

label other than MYO7A, such as Calbindin [16,32], Calcineurin [20,33], and p-AMPKα [34],

while in other images, phalloidin staining of stereocilia bundle was substituted by anti-espin

[35] labeling. Although no images containing hair cell-specific nuclear markers, such as

pou4f3 [36], were included in the pool training data, HCAT performed reasonably well when

tested on such images, especially when they also contained a bundle stain. Of higher impor-

tance is the quality of the imaging data: proper focus adjustment, high signal-to-noise ratio,

image resolution, and adequately adjusted brightness and contrast settings. Furthermore, the

quality of the training dataset greatly affects model performance; upon validation, HCAT per-

formed slightly worse when evaluated on community provided datasets due to fewer represen-

tative examples within the pool of our training data.

We will strive to periodically update our published model when new data arise, further

improving performance over time. At present, HCAT has proven to be sufficiently accurate to

consistently replicate major findings even with occasional discrepancies to a manual analysis,

even when used on datasets that were collected without any optimization for automated analy-

sis. The strength of this software is in automation, allowing for processing thousands of hair

cells over the entire cochlear coil without human input. Recent advancements in tissue-clear-

ing techniques enable the acquisition of the intact 3D architecture of the cochlear coil using

confocal or two-photon laser scanning microscopy allowing for future development of the

HCAT tool as the wealth of such imaging data are made available to the public. Although no

tissue-cleared data were used to develop HCAT, we tested it on few published examples of tis-

sue-cleared mouse and pig cochlear imaging data [3,4]. While HCAT showed reasonable hair

cell detection rates, the tool was unable to perform as accurate as we report for high-resolution

confocal imaging data, most likely because the tissue-cleared datasets were collected at lower

resolution (0.65 to 0.99 μm/pix), and contained only anti-MYO7a fluorescence.

It is common for the population of missing cells, rather than absolute counts, to be reported

in cell survival studies. We were unable to support missing cell detection or quantification in

HCAT. We found there lacked sufficient, and robust information on the locations of missing

cells to automate their detection consistently and accurately. In some cases, a distinctive “X-

shaped” phalangeal scar may be seen in the sensory epithelium following hair cell loss [37,38]

that may be sufficient to determine the presence of a missing cell; however, this is often visible

with an actin stain or on scanning electron microscopy images, and not so in the other patho-

logic cases HCAT attempts to support.

While the detection model was trained and cochlear path estimation designed specifically

for cochlear tissue, HCAT can serve as a template for deep learning-based detection tasks in

other types of biological tissue in the future. While developing HCAT, we employed best prac-

tices in model training, data annotation, and augmentation. With minimal adjustment and a
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small amount of training data, one could adapt the core codebase of HCAT to train and apply

a custom deep learning detection model for any object in an image.

To our knowledge, this is the first whole cochlear analysis pipeline capable of accurately

and quickly detecting and classifying cochlear hair cells. HCAT enables expedited cochlear

imaging data analysis while maintaining high accuracy. This highly accurate and unsupervised

data analysis approach will both facilitate ease of research and improve experimental rigor in

the field.

Materials and methods

Preparation and imaging of in-house training data

Organs of Corti were dissected in one contiguous piece at P5 in Leibovitz’s L-15 culture

medium (21083–027, Thermo Fisher Scientific) and fixed in 4% formaldehyde for 1 h. The sam-

ples were permeabilized with 0.2% Triton-X for 30 min and blocked with 10% goat serum in

calcium-free HBSS for 2 h. To visualize the hair cells, samples were labeled with an anti-Myosin

7A antibody (#25–6790 Proteus Biosciences, 1:400) and goat anti-rabbit CF568 (Biotium) sec-

ondary antibody. Additionally, samples were labeled with Phalloidin to visualize actin filaments

(Biotium CF640R Phalloidin). Samples were then flattened into one turn, mounted on slides

using ProLong Diamond Antifade Mounting kit (P36965, Thermo Fisher Scientific), and

imaged with a Leica SP8 confocal microscope (Leica Microsystems) using a 63×, 1.3 NA objec-

tive. Confocal Z-stacks of 512 × 512 pixel images with an effective pixel size of 288 nm were col-

lected using the tiling functionality of the Leica LASX acquisition software and maximum

intensity projected to form 2D images. All experiments were carried out in compliance with

ethical regulations and approved by the Animal Care Committee of Massachusetts Eye and Ear.

Training data

Varied data are required for the training of generalizable deep learning models. In addition to

imaging data collected in our lab, we sourced generous contributions from the larger hearing

research community from previously reported [7,31,39–46], and in some cases unpublished,

studies. Bounding boxes for hair cells seen in maximum intensity projected z-stacks were man-

ually annotated using the labelImg [47] software and saved as an XML file. For whole cochlear

cell annotation, a “human in the loop” approach was taken, first evaluating the deep learning

model on the entire cochlea, visually inspecting it, then manually correcting errors. Our data-

set contained examples from three different species, multiple ages, microscopy types, and

experimental conditions. Only the images generated in-house contain an entire, intact cochlea.

A summary of our training data is presented in Table 1.

Training procedure

The deep learning architectures were trained with the AdamW [48] optimizer with a learning

rate starting at 1 × 10−4 and decaying based on cosine annealing with warm restarts with a

period of 10,000 epochs. In cases with a small number of training images, deep learning mod-

els tend to fail to generalize and instead “memorize” the training data. To avoid this, we made

heavy use of image transformations that randomly add variability to the original set of training

images and synthetically increase the variety of our training datasets [49] (S2 Fig).

Hyperparameter optimization

Eight manually annotated cochleae were evaluated with the Faster R-CNN detection algorithm

without either rejection method (via detection confidence or non-maximum suppression). A
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grid search was performed by breaking each threshold value into 100 steps from zero to one,

and each combination applied to the resulting cell detections, reducing their number, then cal-

culating the true positive (TP), true negative (TN), and false positive (FP) rates (S1D and S1E

Fig). An accuracy metric of the TP minus both TN and FP was calculated and averaged for

each cochlea. The combinations of values that produce the highest accuracy metric were then

chosen as default for the HCAT algorithm.

Computational environment

HCAT is operating system agnostic, requires at least 8 GB of system memory, and optionally

an NVIDIA GPU with at least 8 GB of video memory to optional GPU acceleration. All scripts

were run on an analysis computer running Ubuntu 20.04.1 LTS, an open-source Linux distri-

bution from Canonical based on Debian. The workstation was equipped with two Nvidia

A6000 graphics cards for a total of 96 GB of video memory. Many scripts were custom written

in python 3.9 using open-source scientific computation libraries including numpy [50], mat-

plotlib, and scikit-learn [51]. All deep learning architectures, training logic, and much of the

data transformation pipeline was written in pytorch [52] and making heavy use of the torchvi-

sion [52] library.

Supporting information

S1 Fig. Validation of hair cell detection analysis and location estimation. Whole cochlear

turns (A) were manually annotated and evaluated with the HCAT detection analysis pipeline.

Each analysis generated cochleograms (B), reporting the “ground truth” result obtained from

manual segmentation (dark lines) superimposed onto the cochleogram generated from hair

cells detected by the HCAT analysis (light lines). The best frequency estimation error was cal-

culated as an octave difference of predicted best frequency for every hair cell versus their man-

ually assigned frequency using the ImageJ plugin (C). Optimal cell detection and non-

maximum suppression thresholds were discerned via a grid search by maximizing the true

positive rate penalized by the false positive and false negative rates (D). Black lines on the

curves (E) denote the optimal hyperparameter value.

(EPS)

S2 Fig. Training data augmentation pipeline. Training images underwent data augmentation

steps, increasing the variability of our dataset and improving resulting model performance.

Examples of each transformation are shown on exemplar grids (bottom). Each of these aug-

mentation steps was probabilistically applied sequentially (left to right, as shown by arrows)

during every epoch.

(EPS)

S3 Fig. Multi-piece cochleogram generation workflow for HCAT. Adult murine cochlear

dissection, depending on technique used, typically produces up to 6 individual pieces of tissue,

numbered from apex to base in (A). These pieces form the entirety of the organ of Corti and

can be analyzed by HCAT (B). First, each piece must have its curvature annotated manually in

ImageJ from base to apex (C) using the EPL cochlea frequency ImageJ plugin. Then, these

annotations and images are passed one-at-a-time to the HCAT command line interface. This

will generate a CSV for each file, which are then manually compiled (E). This allows for the

generation of a complete cochleogram from a multi-piece dissection (F).

(EPS)

S1 Data. A compressed folder with spreadsheets containing, in separate files, the underlying

numerical data and statistical analysis for Figs 1G, 3E, 3F, 3G, 4F, 4H, 5A, 5B, 5C, 6A, 6B, S1B,
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S1C, S1D, S1E, S1F.

(ZIP)
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