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Abstract. Our sense of hearing is mediated by sensory hair cells, precisely arranged and highly specialized cells subdivided 5 
into two subtypes: outer hair cells (OHCs) which amplify sound-induced mechanical vibration, and inner hair cells (IHCs) 6 
which convert vibrations into electrical signals for interpretation by the brain. One row of IHCs and three rows of OHCs 7 
are arranged tonotopically; cells at a particular location respond best to a specific frequency which decreases from base 8 
to apex of the cochlea. Loss of hair cells at a specific place affects hearing performance at the corresponding tonotopic 9 
frequency. To better understand the underlying cause of hearing loss in patients (or experimental animals) a plot of hair 10 
cell survival along the cochlear frequency map, known as a cochleogram, can be generated post-mortem, involving 11 
manually counting thousands of cells. Currently, there are no widely applicable tools for fast, unsupervised, unbiased, and 12 
comprehensive image analysis of auditory hair cells that work well either with imaging datasets containing an entire 13 
cochlea or smaller sampled regions. Current microscopy tools allow for imaging of auditory hair cells along the full length 14 
of the cochlea, often yielding more data than feasible to manually analyze. Here, we present a machine learning-based 15 
hair cell analysis toolbox for the comprehensive analysis of whole cochleae (or smaller regions of interest).  The Hair Cell 16 
Analysis Toolbox (HCAT) is a software that automates common image analysis tasks such as counting hair cells, classifying 17 
them by subtype (IHCs vs OHCs), determining their best frequency based on their location along the cochlea, and 18 
generating cochleograms. These automated tools remove a considerable barrier in cochlear image analysis, allowing for 19 
faster, unbiased, and more comprehensive data analysis practices. Furthermore, HCAT can serve as a template for deep-20 
learning-based detection tasks in other types of biological tissue: with some training data, HCAT’s core codebase can be 21 
trained to develop a custom deep learning detection model for any object on an image.  22 
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Introduction 24 

The cochlea is the organ in the inner ear responsible for the detection of sound. It is tonotopically organized in an 25 
ascending spiral, with mechanosensitive sensory cells responding to high frequency sounds at its base, and low frequency 26 
sounds at the apex. These mechanically sensitive cells of the cochlea, known as hair cells, are classified into two functional 27 
subtypes: outer hair cells (OHC) which amplify sound vibrations, and inner hair cells (IHC) which convert these vibrations 28 
into neural signals1. Each hair cell carries a bundle of actin-rich microvillus-like protrusions called stereocilia. Hair cells are 29 
regularly organized into one row of IHCs and three (rarely four) rows of OHCs within a sensory organ known as the Organ 30 
of Corti2. The OHC stereocilia bundles are arranged in a characteristic V-shape and are composed of thinner stereocilia as 31 
compared to those of IHCs. Hair cells are essential for hearing, and deafness phenotypes are often characterized by their 32 
histopathology using high-magnification microscopy. The cochlea contains thousands of hair cells, organized over a large 33 
spatial area along the length of the Organ of Corti. During histological analysis, each of these thousands of cells represents 34 
a datum which must be parsed from the image by hand ad nauseam. To accommodate for manual analysis, it is common 35 
to disregard all but a small subset of cells, sampling large datasets in representative tonotopic locations (often referred to 36 
as base, middle and apex of the cochlea). To our knowledge, there are two existing automated hair cell counting algorithms 37 
to date, both of which have been developed for specific use cases, largely limiting their application for the wider hearing 38 
research community. One such algorithm by Urata et al3. relies on the homogeneity of structure in the organ of Corti and 39 
fails when irregularities, such as four rows of outer hair cells, are present. Another one, developed by Cortada et al4 does 40 
not differentiate between inner and outer hair cells. Thus, each were limited in their application, likely impeding their 41 
widespread use3,4. The slow speed and tedium of manual analysis poses a significant barrier when faced with large 42 
datasets, be that analyzing whole cochlea instead of sampling three regions, or those generated through studies involving 43 
high-throughput screening5,6. Furthermore, manual analyses can be fraught with user error, biases, sample-to-sample 44 
inconsistencies, and variability between individuals performing the analysis. These challenges highlight a need for 45 
unbiased, automated image analysis on a single-cell level across the entire frequency spectrum of hearing.  46 
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Over the past decade, considerable advancements have been made in deep learning approaches for object detection7. 47 
The predominant approach is Faster R-CNN8, a deep learning algorithm which quickly recognizes the location and position 48 
of objects in an image. While originally designed for use with images collected by conventional means (camera), there has 49 
been success in applying the same architecture to biomedical image analysis tasks9-11. This algorithm can be adapted and 50 
trained to perform such tasks orders of magnitude faster than manual analysis. We have created a machine-learning-51 
based analysis software which quickly and automatically detects each hair cell, determines its type (IHC vs OHC), and 52 
estimates cell’s best frequency based on its location along the cochlear coil. Here, we present a suite of tools for cochlear 53 
hair cell image analysis, the Hair Cell Analysis Toolbox (HCAT), a consolidated software that enables fully unsupervised 54 
hair cell detection and cochleogram generation. 55 

Results 56 

Analysis Pipeline:  HCAT combines a deep learning algorithm, which has been trained to detect and classify cochlear hair 57 
cells, with a novel procedure for cell frequency estimation to extract information from cochlear imaging datasets quickly 58 
and in a fully automated fashion. An overview of the analysis pipeline is shown in Figure 1. The model accepts common 59 
image formats (tif, png, jpeg), in which the order of the fluorescence channels within the images, or their assigned color, 60 
does not affect the outcome. Multi-page tif images are automatically converted to a 2D maximum intensity projection. 61 
When working with large confocal micrographs, HCAT analyzes small crops of the image and subsequently merges the 62 
results to form a contiguous detection dataset. These cropped regions are set to have 10% overlap along all edges, 63 
ensuring that each cell is fully represented at least once. Regions which do not contain any fluorescence above a certain 64 
threshold may be optionally skipped, increasing speed of large image analysis while limiting false positive errors. When 65 
the entire cochlea is contained as a contiguous piece (Figure 1a), which is common for neonatal cochlear histology, HCAT 66 
will estimate the cochlear path and each cell will be assigned a best frequency. Following cell detection and best frequency 67 
estimation, HCAT performs two post-processing steps to refine the output and improve overall accuracy. First, cells 68 
detected multiple times are identified and removed based on a user-defined bounding box overlap threshold, set to 30% 69 
by default. The second step, optional and only applicable for whole cochlear coil analysis, removes cells too far from the 70 
estimated cochlear path, reducing false-positive detections in datasets with sub-optimal anti-MYO7A labeling outcomes, 71 
such as high background fluorescence levels or instances of non-specific labeling away from the Organ of Corti. As outlined 72 
below, for each detection analysis HCAT outputs diagnostic images with overlaid cell-specific data, in addition to an 73 
associated CSV data table, enabling further data analysis or downstream postprocessing, and, when applicable, 74 
automatically generates cochleograms.   75 

HCAT is computationally efficient and can execute detection analysis on a whole cochlea on a timescale vastly faster than 76 
manual analysis, regularly completing in under 90 seconds when utilizing GPU acceleration on affordable computational 77 
hardware. HCAT is available in two user interfaces: 1) a command line interface which offers full functionality, including 78 
cell frequency estimation and batch processing of multiple images or image stacks across multiple folders and 2) a 79 
graphical user interface (GUI), which is user-friendly and is optimized for analysis of individual or multiple images 80 
contained within a single folder. The GUI interface is unable to infer cell’s best frequency and is suitable for analysis of 81 
small regions of cochlea. 82 

Detection and Classification: To perform cell detection, we leverage the Faster R-CNN8 deep learning algorithm with a 83 
ConvNext12 backbone trained on a varied dataset of cochlear hair cells from multiple species, at different ages, and from 84 
different experimental conditions (Table 1, Figure 2).  Most of the hair cells used to train the detection model were stained 85 
with two markers: (1) anti-MYO7A, a hair cell specific cell body marker and (2) the actin label, phalloidin, to visualize the 86 
stereocilia bundle. Bounding boxes for each cell along with class identification labels were manually generated to serve as 87 
the ground truth reference by which we trained the detection model (Figure 2). Boxes were centered around stereocilia 88 
bundles and included the hair cell cuticular plate as these were determined the most robust features per cell in a maximum 89 
intensity projection image. The trained Faster R-CNN model predicts three features for each detected cell: a bounding 90 
box, a classification label (IHC or OHC), and a confidence score (Figure 3).  91 
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  92 

Figure 1. HCAT Analysis Pipeline: A whole cochlea imaged at high magnification (288 nm/px resolution) (A) is broken into 93 
smaller 256x256 px regions and sequentially evaluated by a deep learning detection and classification algorithm (B) to predict 94 
the probable locations of inner and outer hair cells (C). The entire cochlea is then used to infer each cell’s best frequency 95 
along the cochlear coil. First, all supra-threshold anti-MYO7A-positive pixels are converted to polar coordinates (D) and fit by 96 
the Gaussian process nonlinear curve fitting algorithm (E). The resulting curve is converted back to cartesian coordinates and 97 
the resulting line is converted to frequency by the Greenwood function; the apical end of the cochlea (teal circle) is inferred 98 
by the region of greatest curl (F), and the opposite end of the cochlea is assigned as the basal end (red circle). Cells are then 99 
assigned a best frequency based on their position along the predicted curve, and cochleograms (G) are generated in a fully 100 
automated way for each cell type (IHCs and OHCs), with a bin size by default set to 1% of the total cochlear length.   101 
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 102 

Figure 2. HCAT detection algorithm training data. Hair cells in whole cochlea stained against MYO7A (blue) and phalloidin 103 
(magenta) were manually annotated (A-D) and used as training data for the Faster R-CNN deep learning algorithm. Hair cells 104 
vary in appearance based on tonotopy, with representative regions of the base (B), middle (C), and apex (D) shown here. 105 
Since the boundaries between hair cell cytosol (blue) overlap in maximum intensity projection images (E), the bounding boxes 106 
for each cell were annotated around the stereocilia bundle and cuticular plate of each hair cell (F).  107 

 108 

Figure 3. Overview of Faster R-CNN image detection backend. (A), Input micrographs are encoded into high-level 109 
representations (schematized in B) by a trained encoding convolutional neural network. These high-level representations are 110 
next passed to a region proposal network which predicts bounding boxes of objects (C). Based on the predicted object 111 
proposals, encoded crops are classified into OHC and IHC classes, and assigned a confidence score (D). Next, a rejection step 112 
thresholds the resulting predictions based on confidence scores and the overlap between boxes, via non-maximum 113 
suppression (NMS). Default values for user-definable thresholds were determined by the maximum average precision after a 114 
grid search of parameter combinations over eight manually annotated cochleae (E). The outcome of this grid search can be 115 
flattened into accuracy curves for the NMS (F) and rejection threshold (G) at their respective maxima. Boxes remaining after 116 
rejection represent the models’ best estimate of each detected object in the image (H). 117 
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To limit false positive detections, cells predicted by Faster R-CNN can be rejected based on their confidence score, or their 118 
overlap with another detection through an algorithm called non-maximum suppression (NMS). To find optimal values for 119 
the confidence and overlap thresholds, we performed a grid search by which we assessed model performance at each 120 
combination of values and selected values leading to most accurate model performance (Figure 3E, F, G, and 121 
Supplemental Figure S1).  122 

Table 1. Summary of training data. 123 

Laboratory 
Number of  

images 
OHC IHC Animal Microscope Treatment Labeled Protein 

Artur Indzhykulian, PhD 45 12959 3706 Mouse Confocal None MYO7A Actin 

Lisa Cunningham, PhD 77 3424 1290 Mouse Confocal 
Platinum 

Compounds 
MYO7A Actin 

Albert Edge, PhD 2 125 42 Mouse Confocal None MYO7A Actin 

M. Charles Liberman, PhD 29 894 290 Human Confocal None MYO7A ESPN 

Guy Richardson, PhD  

and Corne Kros, PhD 
26 1226 690 Mouse Epifluorescence Aminoglycosides MYO7A Actin 

Mark Rutherford, PhD 5 120 65 Mouse Confocal None MYO7A Actin 

Anthony Ricci, PhD 2 120 43 Mouse Confocal None MYO7A Actin 

Basile Tarchini, PhD 8 292 97 Mouse Confocal None MYO7A Actin 

Bradley Walters, PhD 6 904 238 Guinea Pig Confocal None MYO7A Actin 

Total 200 20064 6461 
     

The trained Faster R-CNN detection algorithm performs best on maximum intensity projections of 3D confocal z-stacks of 124 
hair cells labelled with a cell body stain (such as anti-MYO7A) and a hair bundle stain (such as phalloidin), imaged at a X-Y 125 
resolution of ~290 nm/px (Figure 4D, E). However, the model can perform well with combinations of other markers, 126 
including antibody labeling against ESPN, Calbindin, Calcineurin, p-AMPK𝛂, as well as following FM1-43 dye loading. HCAT 127 
can accurately detect cells in healthy and pathologic cochlear samples, collected within a range of imaging modalities, 128 
resolutions, and signal-to-noise ratios. While the pixel resolution requirements for the imaging data are not very 129 
demanding, imaging artifacts and low fluorescence signal intensity can limit detection accuracy. Although there is one row 130 
of IHCs and three rows of OHCs in most cochlear samples, there are rare instances where two rows of IHCs or four rows 131 
OHCs can be seen in normal cochlear samples, the algorithm is robust and largely accurate in such instances (Figure 4D). 132 

Cochlear path determination:  For images containing an entire contiguous cochlear coil, HCAT can additionally predict 133 
cell’s best frequency via automated cochlear path determination. To do this, HCAT fits a Gaussian process nonlinear 134 

regression13 through the ribbon of anti-MYO7A-positive pixels, effectively treating each hair cell as a point in cartesian 135 

space. A line of best fit can be predicted through each hair cell and in doing so approximate the curvature of the cochlea. 136 
The length of this curve is then used as an approximation for the length of the cochlear coil. For example, a cell that is 20% 137 
along the length of this curve could be interpreted as one positioned at 20% along the length of the cochlea, assuming the 138 
entire cochlear coil was imaged.  139 

To optimally perform the initial regression, individual cell detections are rasterized and then downsampled by a factor of 140 
ten using local averaging (increasing the execution speed of this step), then converted to a binary image. Next, a binary 141 
hole closing operation is used to close any gaps, and subsequent binary erosion is used to reduce the effect of nonspecific 142 
staining. Each positive binary pixel of the resulting two-dimensional image is then treated as an X/Y coordinate which may 143 
be regressed against (Figure 1D). The resulting image is unlikely to form a mathematical function in cartesian space 144 
however, as the cochlea may curve over itself such that for a single location on the X axis, there may be multiple clusters 145 
of cells at different Y values. To rectify this overlap, the data points are converted from cartesian to polar coordinates by 146 
shifting the points and centering the cochlear spiral around the origin, then converting each X/Y coordinate to a 147 
corresponding angle/radius coordinate. As the cochlea is not a closed loop, the resulting curve will have a gap, which is 148 
then detected by the algorithm, shifting these points by one period, and creating a continuous function. A Gaussian 149 
process13, a generalized nonlinear function, is then fit to the polar coordinates and a line of best fit is predicted. This line 150 
is then converted back to cartesian coordinates and scaled up to correct for the earlier down-sampling (Figure 1E).  151 
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The apex of the cochlea is then inferred by comparing the curvature at each end of the line of best fit based on the 152 
observation that the apex has a tighter curl when mounted on a slide. The resulting curve closely tracks the hair cells on 153 
the image. Next, the curve’s length is measured, and each detected cell is then mapped to it as a function of the total 154 
cochlear length (%). Each cell’s best frequency is calculated using the Greenwood function, a species-specific method of 155 
determining cell’s best frequency from its cochlear position14 (Figure 1F). Upon completion of this analysis, the automated 156 
frequency assignment tool generates two cochleograms, one for IHCs and one for OHCs (Figure 1G). 157 

 158 

Figure 4. Validation output of the hair cell detection analysis. A validation output image is generated for each detection 159 
analysis performed by the software. An image is automatically generated by the software similar to the one shown here for 160 
a dataset that includes an entire cochlea (A), with the vast majority of cells accurately detected (B). For each image, the model 161 
embeds information on cell’s ID, its location along the cochlear coil (distance in µm from the apex), it’s best frequency, cell 162 
classification (IHC as yellow squares, OHC as green circles) and the line that represents tool’s cochlear path estimation (C, 163 
blue line). The very few examples of poor performance are highlighted in D and E (arrowheads point to 3 missed IHCs and 164 
two OHCs). A set of cochleograms reporting cell counts per every 1% of total cochlear length, generated with manual cell 165 
counts and frequency assignment (grey) closely agrees with a HCAT-predicted cochleogram (red) generated in a fully 166 
automated fashion (F). To assess the accuracy of tool’s best frequency assignment, the magnitude difference between every 167 
cell’s best frequency calculated manually, and automatically, with respect to frequency for eight different cochleae is at 168 
maximum 15% of an octave across all frequencies (G). Each color represents one cochlea.  169 
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To validate this method of best frequency assignment, we compared it to the existing standard in the field – manual 170 
frequency estimation. We manually mapped the cochlear length to cochlear frequency using a widely used imageJ plugin, 171 
developed by the Histology Core at the Eaton-Peabody Laboratories (Mass Eye and Ear) and compared them to the results 172 
predicted by our automatic tool (Figure 4G and Supplemental Figure S1). Over eight manually analyzed cochleae, the 173 
maximum cell frequency error of automated, relative to a manually, mapped best frequency was under 10% of an octave, 174 
with the discrepancy between the two methods less than 5% for most cells (60% of a semitone). In one cochlea, the overall 175 
cochlear path was predicted to be shorter than manually assigned, due to the threshold settings of the MYO7A channel, 176 
causing an error at very low and very high frequencies (Figure 4G, dark blue). While this error was less than 0.15% of an 177 
octave, it is an outlier in the dataset. It is recommended, when using this tool, to evaluate the automated cochlear path 178 
estimation, and if poor, perform manual curve annotation to facilitate best frequency assignment. If required, the user is 179 
also able to switch the designation of automatically detected points representing the apical and basal ends of the cochlear 180 
coil (Figure 1F, red and cyan circles). 181 

Performance: Overall, cochleograms generated with HCAT track remarkably well to those generated manually (Figure 4F). 182 
Comparing HCAT to manually annotated cochlear coils (not used to train the model), we report a 98.6±0.005% true 183 
positive accuracy for cell identification and a <0.01% classification error (8 cochlear coils, 4428 IHCs and 15754 OHCs; 184 
Supplemental Figure S1). We found no bias in accuracy with respect to estimated best frequency. To assess HCAT 185 
performance on a diverse set of cochlear micrographs, we sampled 88 images from 15 publications15-29 that represent a 186 
wide variety of experimental conditions, including ototoxic treatment using aminoglycosides, genetic manipulations that 187 
could affect the hair cell anatomy, noise exposure, blast trauma and age-related hearing loss (Table 2). We performed a 188 
manual quantification and automated detection analysis of these images after they were histogram-adjusted and scaled 189 
via the HCAT GUI for optimal accuracy. HCAT achieved an overall OHC detection accuracy of 98.6±0.5% and an IHC 190 
detection accuracy of 96.9±2.8% for 3545 OHCs and 1110 IHCs, with mean error of 0.34 OHC and 0.32 IHC per image. Of 191 
the 88 images we used for this validation, no errors were detected on 62 of them, and HCAT was equally accurate in 192 
images of low and high absolute cell count (Figure 5).  193 

Table 2. Summary of micrographs sampled from existing publications to test HCAT performance. 194 

Lab 
Number 

of images 
OHC IHC Animal Microscopy Treatment Age Labeled Protein  

Beurg et al., 2019 2 39 17 Mouse Confocal Tmc1p.D569N mouse  Neonatal Calbindin Actin 

Fang et al., 2019 1 42 14 Mouse Confocal WT mouse Adult MYO7A Actin 

Fu et al., 2022 6 175 69 Mouse Confocal Klc2-/- mouse  Adult MYO7A Actin 

Gyorgy et al., 2019 11 330 113 Mouse Confocal Tmc1Bth mutant Adult MYO7A Actin 

He et al., 2021 7 304 69 Mouse Confocal Noise trauma Adult Calcineurin Actin 

Hill et al., 2016 5 171 0 Mouse Confocal Noise trauma Adult p-AMPK𝛂 Actin 

Kim et al., 2018 3 102 33 Mouse Confocal Blast trauma Adult MYO7A Actin 

Lee et al., 2017 2 24 7 Mouse Confocal WT mouse Neonatal MYO7A Actin 

Li et al., 2020 2 70 21 Mouse Confocal Myo7a-ΔC mouse Adult MYO7A Actin 

Mao et al., 2021 9 916 311 Mouse Confocal Blast trauma Adult MYO7A Actin 

Sang et al., 2015 6 193 65 Mouse Confocal Idlr1-/- mouse  Adult MYO7A Actin 

Sethna et al., 2021 7 274 104 Mouse Confocal Pcdh15R250X mouse Adult MYO7A Actin 

Wang et al., 2011 2 90 26 Mouse Confocal SCX-/- mouse Adult MYO7A Actin 

Yousaf et al., 2015 24 760 244 Mouse Confocal Map3k1tm1Yxia  Adult MYO7A Actin 

Zhao et al., 2021 1 55 17 Mouse Confocal Clu-/- mouse  Adult MYO7A Actin 
          

Total 88 3545 1110       
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 195 

Figure 5. HCAT detection performance on published images of cochlear hair cells. HCAT detection performance was assessed 196 
by running a cell detection analysis in the GUI on 88 confocal images of cochlear hair cells sampled from published figures 197 
across 15 different original studies15-29. None of the images from this analysis were used to train the model. Each image was 198 
adjusted within the GUI for optimal detection performance. Cells in each image were also manually counted (presented as 199 
ground truth values) and results compared to HCAT’s automated detection. The resulting population distributions of hair cells 200 
are compared for OHCs (A), and IHCs (B). The mean difference in predicted number of IHCs (open circles) and OHCs (filled 201 
circles) in each publication is summarized for each cell type: zero indicates an accurate detection, negative values indicate 202 
false-negative detections, while positive values indicate false-positive detections (C).  203 

 204 

Validation on published datasets: We further evaluated HCAT on whole, external datasets (generously provided by the 205 
Cunningham30, Richardson and Kros laboratories6) and replicated analyses from their publications. Each dataset presented 206 
examples of Organ of Corti epithelia treated with ototoxic compounds resulting in varying degrees of hair cell loss. The 207 
two datasets complement each other in several ways, covering most use cases of data analysis needs following ototoxic 208 
drug use in the Organ of Corti to assess hair cell survival: in-vivo vs. in-vitro drug application, confocal fluorescence vs. 209 
widefield fluorescence microscopy imaging, early postnatal vs. adult Organ of Corti imaging. HCAT succeeded in 210 
quantifying the respective datasets in a fully automated fashion with an accuracy sufficient to replicate the main finding 211 
in each study (Figure 6). It is worth noting that these datasets were collected without optimization for an automated 212 
analysis. Thus, we expect an even higher performance accuracy with an experimental design optimized for HCAT-based 213 
automated analysis.  214 

Discussion  215 

Here we present the first fully automated cochlear hair cell analysis pipeline for analyzing multiple micrographs of 216 
cochleae, quickly detecting and classifying hair cells. HCAT can analyze whole cochleae or individual regions and can be 217 
easily integrated into existing experimental workflows. While there were previous attempts at automating this analysis, 218 
each were limited in their use to achieve widespread application3,4. HCAT allows for unbiased, automated hair cell analysis 219 
with detection accuracy levels approaching that of human experts at a speed so significantly faster that it is desirable even 220 
with rare errors. Furthermore, we validate HCAT on data from various laboratories and find it is accurate across different 221 
imaging modalities, staining, age, and species.  222 
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 223 

Figure 6. Evaluation of HCAT performance on cochlear datasets to assess ototoxic drug effect. To assess HCAT performance 224 
on aberrated cochlear samples, we compared HCAT analysis results to manual quantification on datasets from two different 225 
publications focused on assessing hair cell survival following treatment with ototoxic compounds. (A) Original imaging data 226 
underlying the finding in Figure 2F of Kenyon et al., 20216, generously provided by the Richardson and Kros laboratories. 227 
Images were collected using epifluorescence microscopy, following a 48-hour incubation in either 0 μM gentamicin (Control), 228 
5 μM gentamicin, or 5 μM gentamicin + 50 μM test compound UoS-7692. Each symbol represents the number of OHCs in a 229 
mid-basal region from one early postnatal in-vitro cultured cochlea6. One-way ANOVA with Tukey’s multiple comparison tests. 230 
***, p < 0.001; ns, not significant. In some cases, HCAT detections overestimated the total number of surviving hair cells in 231 
the gentamycin-treated tissue. However, overall, the software-generated results are in agreement with those of the original 232 
study, drawing the same conclusion. (B) Original imaging data underlying the finding in Figure 7A-B in Gersten et al., 202030 233 
were generously provided by the Cunningham laboratory. In this study, mice were treated by in-vivo application of clinically 234 
proportional levels of ototoxic compounds, Cisplatin, Carboplatin, Oxaliplatin, and Saline (control), in an intraperitoneally 235 
cyclic delivery protocol30. Regions of interest were imaged at the base, middle, and apex of each cochlea. HCAT’s automated 236 
detections were comparable to manual quantification and were sufficient to draw a conclusion that is consistent with the 237 
original publication. Upon comparison, HCAT had higher detection accuracy in OHCs, compared to IHCs, likely due to the 238 
variability of the MYO7A intensity levels in IHCs across the dataset. 239 

Deep-learning-based detection infers information from the pixels of an image to make decisions about what objects are 240 
and where they are located. To this end, the information is devoid of any context. HCAT’s deep learning detection model 241 
was trained largely using anti-MYO7A and phalloidin labels, however the model can perform on specimens labeled with 242 
other markers, as long as they are visually similar to examples in our training data. For example, some of the validation 243 
images of cochlear hair cells sampled from published figures contained cell body label other than MYO7A, such as 244 
Calbindin31, Calcineurin32, and p-AMPK𝛂33 while in other images phalloidin staining of stereocilia bundle was substituted 245 
by anti-espin34 labeling. Of higher importance is the quality of the imaging data: proper focus adjustment, high signal-to-246 
noise ratio, and adequately adjusted brightness and contrast settings. Furthermore, the quality of the training dataset 247 
greatly affects model performance; upon validation, HCAT performed slightly worse when evaluated on community 248 
provided datasets due to fewer representative examples within the pool of our training data. We will strive to periodically 249 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2022. ; https://doi.org/10.1101/2021.10.12.464098doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.12.464098
http://creativecommons.org/licenses/by-nc-nd/4.0/


update our published model when new data arise, further improving performance over time. At present, HCAT has proven 250 
to be sufficiently accurate to consistently replicate major findings even with occasional discrepancies to a manual analysis, 251 
even when used on datasets that were collected without any optimization for automated analysis. The strength of this 252 
software is in automation, allowing for processing thousands of hair cells over the entire cochlear coil without human 253 
input.  254 

While the detection model was trained and cochlear path estimation designed specifically for cochlear tissue, HCAT can 255 
serve as a template for deep-learning-based detection tasks in other types of biological tissue in the future. While 256 
developing HCAT, we employed best practices in model training, data annotation and augmentation. With minimal 257 
adjustment and a small amount of training data, one could adapt the core codebase of HCAT to train and apply a custom 258 
deep learning detection model for any object in an image.  259 

To our knowledge, this is the first whole cochlear analysis pipeline capable of accurately and quickly detecting and 260 
classifying cochlear hair cells. This hair cell analysis toolbox (HCAT) enables expedited cochlear imaging data analysis while 261 
maintaining high accuracy. This highly accurate and unsupervised data analysis approach will both facilitate ease of 262 
research and improve experimental rigor in the field. 263 

Materials and Methods  264 

Preparation and imaging of in-house training data. Organs of Corti were dissected at P5 in Leibovitz’s L-15 culture medium 265 
(21083-027, Thermo Fisher Scientific) and fixed in 4% formaldehyde for 1 hour. The samples were permeabilized with 266 
0.2% Triton-X for 30 minutes and blocked with 10% goat serum in calcium-free HBSS for two hours. To visualize the hair 267 
cells, samples were labeled with an anti-Myosin 7A antibody (#25-6790 Proteus Biosciences, 1:400) and goat anti-rabbit 268 
CF568 (Biotium) secondary antibody. Additionally, samples were labeled with Phalloidin to visualize actin filaments 269 
(Biotium CF640R Phalloidin). Samples were then mounted on slides using ProLong® Diamond Antifade Mounting kit 270 
(P36965, Thermo Fisher Scientific,) and imaged with a Leica SP8 confocal microscope (Leica Microsystems) using a 63×, 271 
1.3 NA objective. Confocal Z-stacks of 512x512 pixel images with an effective pixel size of 288 nm were collected using the 272 
tiling functionality of the Leica LASX acquisition software and maximum intensity projected to form 2D images. All 273 
experiments were carried out in compliance with ethical regulations and approved by the Animal Care Committee of 274 
Massachusetts Eye and Ear.  275 

Training Data: Despite the National Institutes of Health (NIH) mandate to share NIH-funded data, getting access to imaging 276 
data linked to published studies reported by other laboratories remains to be challenging. Varied data are required for 277 
the training of generalizable deep learning models. In addition to data collected in our lab, we sourced generous 278 
contributions from the larger hearing research community from previously reported 6,30,35-42, and in some cases 279 
unpublished, studies. Bounding boxes for hair cells seen in maximum intensity projected z-stacks were manually 280 
annotated using the labelImg43 software and saved as an XML file. For whole cochlear cell annotation, a “human in the 281 
loop” approach was taken, first evaluating the deep learning model on the entire cochlea, visually inspecting it, then 282 
manually correcting errors. Our dataset contained examples from three different species, multiple ages, microscopy types, 283 
and experimental conditions. A summary of our training data is presented in Table 1.  284 

Training Procedure: The deep learning architectures were trained with the AdamW44 optimizer with a learning rate starting 285 
at 1e-4 and decaying based on cosine annealing with warm restarts with a period of 10000 epochs. In cases with a small 286 
number of training images, deep learning models tend to fail to generalize and instead “memorize” the training data. To 287 
avoid this, we made heavy use of image transformations which randomly add variability to the original set of training 288 
images and synthetically increase the variety of our training data sets45 (Supplemental Figure S2).  289 

Hyperparameter Optimization: Eight manually annotated cochleae were evaluated with the Faster R-CNN detection 290 
algorithm without either rejection method (via detection confidence or non-maximum suppression). A grid search was 291 
performed by breaking each threshold value into 100 steps from zero to one, and each combination applied to the 292 
resulting cell detections, reducing their number, then calculating a the true positive (TP), true negative (TN), and false 293 
positive (FP) rates (Supplemental Figure S1D-E). An accuracy metric of the TP minus both TN and FP was calculated and 294 
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averaged for each cochlea. The combination of values which produce the highest accuracy metric were then chosen as 295 
default for the HCAT algorithm.  296 

Computational Environment: HCAT is operating system agnostic, requires at least 8 GB of system memory, and optionally 297 
a NVIDIA GPU with at least 8 GB of video memory to optional GPU acceleration. All scripts were run on an analysis 298 
computer running Ubuntu 20.04.1 LTS, an open-source Linux distribution from Canonical based on Debian. The 299 
workstation was equipped with two Nvidia A6000 graphics cards for a total of 98Gb of video memory. Many scripts were 300 
custom written in python 3.9 using open source scientific computation libraries including numpy46, matplotlib, scikit-301 
learn47. All deep learning architectures, training logic, and much of the data transformation pipeline was written in 302 
pytorch48 and making heavy use of the torchvision48 library.  303 

Acknowledgements. We would like to thank Dr. Marcelo Cicconet (Image and Data Analysis Core at Harvard Medical 304 
School) and Haobing Wang, MS (Mass Eye and Ear Light Microscopy Imaging Core Facility) for their assistance in this 305 
project. We thank Dr. Lisa Cunningham, Dr. Michael Deans, Dr. Albert Edge, Dr. Katharine Fernandez, Dr. Ksenia Gnedeva, 306 
Dr. Yushi Hayashi, Dr. Tejbeer Kaur, Dr. Jinkyung Kim, Prof. Corne Kros, Dr. M. Charles Liberman, Dr. Vijayprakash 307 
Manickam, Dr. Anthony Ricci, Prof. Guy Richardson, Dr. Mark Rutherford, Dr. Basile Tarchini, Dr. Bradley Walters, the 308 
members of their teams and all other research groups, for providing their datasets to evaluate the HCAT. We thank 309 
Hidetomi Nitta, Emily Nyguen, and Ella Wesson for their assistance in generating a portion of training data annotations. 310 
We also thank Evan Hale, Corena Loeb for critical reading of the manuscript. This work was supported by NIH 311 
R01DC020190 (NIDCD), R01DC017166 (NIDCD) and R01DC017166-04S1 "Administrative Supplement to Support 312 
Collaborations to Improve the AI/ML-Readiness of NIH-Supported Data" (Office of the Director, NIH) to A.A.I. 313 

Author contributions. 314 
C.J.B. Conceptualization, Methodology development, Investigation, Data Curation, Software development, Formal 315 
analysis, Visualization, Validation, Writing - Original Draft, Resources, Supervision, assistance with Funding acquisition;  316 
R.T.O. Data Curation, Formal analysis, Validation and Visualization (Figure 6A), Writing - Review & Editing;  317 
R.G.S. Data Curation, Writing - Review & Editing; 318 
D.B.R. Investigation/imaging of large portion of in-house training data, Writing - Review & Editing;.  319 
A.A.I. Conceptualization, Methodology development, Visualization, Validation, Writing - Original Draft, Supervision, 320 
Project administration, Resources, Funding acquisition. All authors contributed to the final version of the manuscript. 321 

Code availability.  322 
All code has been hosted on github and is available for download at https://github.com/indzhykulianlab/hcat along with 323 
accompanying documentation at hcat.readthedocs.io. The EPL cochlea frequency ImageJ plugin is available for download 324 
at: https://www.masseyeandear.org/research/otolaryngology/eaton-peabody-laboratories/histology-core 325 
  326 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2022. ; https://doi.org/10.1101/2021.10.12.464098doi: bioRxiv preprint 

https://github.com/indzhykulianlab/hcat
https://hcat.readthedocs.io/en/latest/
https://www.masseyeandear.org/research/otolaryngology/eaton-peabody-laboratories/histology-core
https://doi.org/10.1101/2021.10.12.464098
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Figures 327 

 328 

Supplemental Figure 1. Validation of hair cell detection analysis and location estimation. Whole cochlear turns (A) were 329 
manually annotated and evaluated with the HCAT detection analysis pipeline. Each analysis generated cochleograms (B), 330 
reporting the ‘ground truth’ result obtained from manual segmentation (dark lines) superimposed onto the cochleogram 331 
generated from hair cells detected by the HCAT analysis (light lines). The best frequency estimation error was calculated as 332 
an octave difference of predicted best frequency for every hair cell vs their manually assigned frequency using the imageJ 333 
plugin (C). Optimal cell detection and non-maximum suppression thresholds were discerned via a grid search by maximizing 334 
the true positive rate penalized by the false positive and false negative rates (D).  Black lines on the curves (E) denote the 335 
optimal hyperparameter value.  336 
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 337 

 338 

Supplemental Figure 2. Training data augmentation pipeline. Training images underwent data augmentation steps, 339 
increasing the variability of our dataset and improving resulting model performance. Examples of each transformation are 340 
shown on exemplar grids (bottom). Each of these augmentation steps were probabilistically applied sequentially (left to right, 341 
as shown by arrows) during every epoch.   342 
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