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 5 
Abstract. Auditory hair cells, the whole length of the cochlea, are routinely visualized using light microscopy 6 
techniques.  It is common, therefore, for one to collect more data than is practical to analyze manually. There 7 
are currently no widely accepted tools for unsupervised, unbiased, and comprehensive analysis of cells in an 8 
entire cochlea. This represents a stark gap between image-based data and other tests of cochlear function. To 9 
close this gap, we present a machine learning-based hair cell analysis toolbox, for the analysis of whole 10 
cochleae, imaged with confocal microscopy. The software presented here allows the automation of common 11 
image analysis tasks such as counting hair cells, determining their best frequency, as well as quantifying single 12 
cell immunofluorescence intensities along the entire cochlear coil. We hope these automated tools will remove 13 
a considerable barrier in cochlear image analysis, allowing for more informative and less selective data analysis 14 
practices. Keywords: hair cell, stereocilia, machine-learning, cochleogram, segmentation. 15 
 16 
Introduction 17 
Microscopy is an essential and very common tool in investigating the histology and pathology of the inner ear. 18 
Hearing loss phenotypes are often reflected in the histology of the sensory epithelium, compromising the organ 19 
of Corti, and may be visualized with high magnification light microscopy. Collected micrographs can cover a wide 20 
spatial area, capturing data on thousands of cells, often in three spatial dimensions. Auditory hair cells of the 21 
cochlea are classified into two subtypes, inner hair cells (IHC) and outer hair cells (OHC), with varying geometric 22 
locations, sizes, shapes, and protein expression ‘fingerprints’, all of which may vary with age and along the 23 
tonotopic axis1. Each hair cell carries a bundle of actin-rich microvilli-like protrusions called stereocilia. The OHC 24 
stereocilia bundles have a characteristic V-shape and are composed of thinner stereocilia as compared to those 25 
of IHCs. Each cell is a potential datum point which must be parsed from the image into a usable format for 26 
analysis. Typically, this may have been done by hand, aided by a computer. While achievable for a small number 27 
of cells, the slow speed and tedium of this analysis poses a significant barrier when faced with large datasets, 28 
especially those generated through studies involving high-throughput screening2. Alternatively, (and popular in 29 
cochlear analysis) large datasets can be broken down into representative locations which can be analyzed in 30 
depth by hand. Often three small representative regions at the base, middle, and apex of the cochlear spiral3 are 31 
chosen to reflect the tonotopic changes of biological variables. This approach may be enough to paint a general 32 
picture of the outcome of an experiment but scales poorly in comparison to other common techniques of cochlear 33 
function testing, such as recording auditory brainstem responses or distortion product otoacoustic emissions, 34 
which could be easily collected, and analyzed, at an arbitrarily large number of frequencies4,5. The disconnect in 35 
the frequency resolution of histopathological analysis and cochlear function testing makes image analysis on a 36 
single-cell level across the entire frequency spectrum of hearing desirable. To this end, an analysis software 37 
must detect each hair cell, determine its type (IHC vs OHC), segment these cells to extract geometric and 38 
fluorescence data, and assign a cell its best frequency based on its location along the cochlear turn.  39 
 40 
Considerable work has been done on deep learning approaches for object detection. The predominant approach 41 
is Faster RCNN6, a deep learning algorithm which quickly recognizes the location and position of objects in an 42 
image. While designed for use with images collected by conventional means (cell phone or camera), there has 43 
been success in applying the architecture to biomedical image analysis tasks7-9. We apply this algorithm to detect 44 
and classify hair cells at speeds orders of magnitude faster than manual analysis, while maintaining high 45 
accuracy. High detection accuracy is paramount to generating cochleograms – a graph of hair cell count along 46 
the length of the cochlea – a common type of manual analysis reporting hair cell survival rates along the cochlear 47 
coil most often used in human temporal bone studies.  48 
 49 
Hair cell detection and classification alone, however, is not sufficient for the quantification of hair cell 50 
fluorescence, which has applications in gene therapy, RNA scope quantification, and various fluorescent dye 51 
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loading assays. Instead, the pixels in an image must be assigned to the high-level cell object they represent in 52 
a process known as instance segmentation. Cell segmentation has classically been tackled with a combination 53 
of manual thresholding and the watershed algorithm, a segmentation tool relying on intensity gradients between 54 
objects10,11. Often cells can be hard to detect in densely packed tissues with non-obvious delineation between 55 
cells. Poor separation negatively impacts watershed segmentation, with optimal performance heavily reliant on 56 
manual fine-tuning, which is slow and can introduce bias. More recently, machine learning approaches have 57 
been successful in supplanting the watershed algorithm for instance segmentation with increased accuracy12-15. 58 
Predicting the spatial embeddings of cells, a deep learning approach for generating instance segmentation 59 
masks,  is highly accurate and generalizes to a wide array of cell types16. This approach was popularized by the 60 
Cellpose algorithm17, and offers exceptional results for segmentation in two dimensions. 3D segmentation is 61 
possible by applying Cellpose along different coordinate planes and using the 2D masks to generate the 3D 62 
mask17. This is effective with isotropic and morphologically homogenous cells, however the algorithm’s 63 
performance in detecting hair cells was less impressive, likely due to nonobvious spatial separation.    64 
 65 
Leveraging these recent deep learning advances, we present here a suite of tools for cochlear hair cell image 66 
analysis, the Hair Cell Analysis Toolbox (HCAT), a consolidated software for fully unsupervised hair cell detection 67 
and segmentation.  68 
 69 
Results 70 
 71 
Analysis Pipeline Overview:  The software utilizes deep learning algorithms which have been trained to accept 72 
input data of volumetric confocal micrographs of full cochlear turns, while also permissive to datasets containing 73 
smaller cochlear fragments. The datasets contain at least two channels of information, anti-Myo-VIIA labeling to 74 
visualize the hair cell body, and the phalloidin staining to visualize the stereocilia bundle, at a X-Y resolution of 75 
289 nm/px (Figure 1). The user may either choose to run a cell detection analysis to generate a cochleogram of 76 
inner and outer hair cells (from maximal projections of confocal data) or run a segmentation analysis (from 3D 77 
volumetric confocal data), which will extract fluorescence information of all segmented hair cells along the 78 
tonotopic axis. Both algorithms scale and may be run on arbitrarily large confocal micrographs by repeatedly 79 
analyzing small local crops of the image and merging the result to form a contiguous dataset. These local crops 80 
are chosen to overlap such that each cell is guaranteed to be completely represented in at least one. Crops 81 
which do not contain Myo-VIIA fluorescence above a certain threshold are skipped, increasing speed of large 82 
image analysis and limiting false positive errors. In the case of a whole cochlear analysis, each cell is additionally 83 
assigned a best frequency via nonlinear regression and the Greenwood function as outlined below. The result 84 
of every analysis is output as an associated csv data table to enable further data analysis or downstream 85 
postprocessing.  86 
 87 
Cochlear position detection: For both, the segmentation and detection analysis, the software must determine the 88 
place of each hair cell along the cochlea to analyze any location-based trends along the tonotopic axis. To do 89 
this, we fit a Gaussian process nonlinear regression through the Myo-VIIA fluorescence image, effectively 90 
treating each hair cell as a point in cartesian space. A line of best fit can be predicted through each hair cell and 91 
in doing so approximate the curvature of the cochlea. We can then use the length of this curve as an 92 
approximation for the length of the cochlea. For example, a cell that is 20% along the length of this curve could 93 
be interpreted as one positioned at 20% along the length of the cochlea.  94 
 95 
To optimally perform this regression and determine cell’s best frequency, multiple preprocessing steps are 96 
necessary. First, a maximum projection along the z axis of a previously predicted, whole cochlea segmentation 97 
mask, is taken, reducing a three-dimensional volume to a single plane. The image is then down sampled by a 98 
factor of ten using local averaging and converted to a binary image. Two final preprocessing steps are performed: 99 
(1) binary hole closing which closes any gaps, and (2) binary erosion which reduces the effect of external 100 
nonspecific staining. Each positive binary pixel of the resulting two-dimensional image is then treated as an X/Y 101 
pair which may be regressed against.  102 
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 103 
 104 

Figure 1. Overview of Algorithmic Approach. Top, Exemplar data used in this study. Cochlear coils 105 
immunolabeled against Myo-VIIA (blue), stained with Phalloidin (red) and DAPI (grayscale), and genetically 106 
expressing eGFP (green) were volumetrically imaged and input to software for analysis. Bottom, the user may 107 
choose to run either a 3D segmentation analysis (blue), in which cells are volumetrically delineated from each other, 108 
allowing for hair cell fluorescence intensity measurements on a single-cell level along the entire cochlear coil, or a 109 
2D detection analysis (red), in which hair cells are counted and classified by type. These two analyses are paired 110 
with a cochlear location algorithm (green) which assigns a best frequency to each hair cell, allowing for 111 
cochleograms to be readily generated, or the fluorescence intensity measurements to be investigated as a function 112 
of frequency or cochlear location.  113 

 114 
The resulting image of an intact cochlea, when processed as is, would likely not form a mathematical function in 115 
cartesian space, and therefore be difficult to approximate. For example, the cochlea may curve over itself such 116 
that for a single location on the X axis, there may be multiple clusters of cells at different Y values. To rectify this 117 
overlap, the data points are converted from cartesian, to polar coordinates by first shifting the points and 118 
centering the cochlear spiral around the origin. From this, each X/Y pair can be converted to a corresponding 119 
angle/radius pair. In doing so, a gap is created as a cochlea is not a closed loop. This gap is detected, and these 120 
points are shifted by one period, creating a continuous function. A Gaussian process18, a generalized nonlinear 121 
function, is then fit to the spherical coordinates and a line of best fit is predicted. This line is then converted back 122 
to cartesian coordinates and scaled to correct for the earlier down sampling. A linear interpolation of points is 123 
performed to ensure each point is exactly 0.1% of the length of the cochlea. The apex of the cochlea is then 124 
inferred by comparing the curvature at each end of the line of best fit based on the observation that the apex has 125 
a tighter curl when mounted on a slide. Next, the location of each hair cell along the cochlea as a function of its 126 
total length (%) is determined by projecting the cell’s center to the nearest point of the line of best fit. Finally, the 127 
frequency at that location is then calculated using the Greenwood function19.  128 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2021. ; https://doi.org/10.1101/2021.10.12.464098doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.12.464098
http://creativecommons.org/licenses/by-nc-nd/4.0/


The final result is a curve of known length which tracks the hair cells of the cochlea. Any cell location may be 129 
mapped to this curve as a function of the total cochlear length (%) and a best frequency calculated using the 130 
Greenwood function. Upon our careful examination, this process proves to be highly accurate. We also manually 131 
mapped the cochlear length to cochlear frequency using a widely used imageJ plugin, developed by the  132 
Histology Core at the Eaton-Peabody Laboratories, Mass Eye and Ear. The plugin is available for download  133 
at https://www.masseyeandear.org/research/otolaryngology/eaton-peabody-laboratories/histology-core. Over 134 
eight manually analyzed cochleae, the maximum cell frequency error relative to a manually mapped best 135 
frequency result was under 10% of an octave, with the discrepancy between the two methods less than 5% for 136 
most cells (60% of a semitone, see Supplementary Figure S2). If the curvature estimation fails, a manually 137 
annotated text file of points following the cochlear spiral may be additionally passed to the algorithm. A smoothing 138 
spline fit through these points will be used instead for cell frequency estimation. It is also worth note, that both 139 
hair cell detection and segmentation can be carried out by the HCAT software in isolated sections of the cochlea 140 
in the absence of whole cochlear imaging. While this approach does not make use of the full functionality of the 141 
software, it does provide researchers with a valuable tool for automated and unbiased cell counting and 142 
fluorescence quantification, suitable for large datasets.    143 
 144 
Hair Cell Detection: A maximum projection image containing cochlear hair cells can be iteratively evaluated in a 145 
deep learning model trained to detect and classify cochlear hair cells using this software. We leverage the Faster 146 
R-CNN deep learning model with a ResNet-50 backbone20, trained on early postnatal cochlea labelled with 147 
phalloidin and antibodies against Myo-VIIA (Figure 2). While trained solely with these labels, the model can 148 
perform on cells labeled by other markers, provided the specimens contain both cytosolic hair cell, and 149 
stereocilia, labels.  150 
 151 

 152 

Figure 2. Exemplar training data for the hair cell detection algorithm. Cochlear hair cells at varied frequency 153 
location were imaged using confocal microscopy. Images were immunolabeled against Myo-VIIA (blue) and stained 154 
with phalloidin (red). Bounding boxes were manually placed around inner (white) and outer (green) hair cell 155 
stereocilia bundles. These boxes and classifications were used to train the Faster R-CNN detection algorithm. Scale 156 
bar, 25 µm. 157 
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The deep learning model predicts three features for each predicted cell, a box encompassing the cell, a 158 
classification label (IHC vs OHC), and a confidence score (Figure 3). After evaluation, two post-processing steps 159 
are taken to refine the output and improve overall accuracy. First, some cells may be detected twice due to 160 
redundancies in evaluating cropped subsections of a whole image. Redundant cell detections are removed and 161 
the cell with the largest confidence score is kept. The second step is optional and relies on the estimation of the 162 
cochlear spatial path outlined earlier, with cells whose distance away from this path exceeds a threshold value 163 
are removed. This step can be enabled in cases with sub-optimal anti-MyoVIIA labeling outcomes with instances 164 
of non-specific labels away from the ribbon of hair cells along the cochlea, thus reducing the false-positive 165 
detection rate. 166 
 167 

 168 

Figure 3. Simplified overview of Faster R-CNN image detection pipeline. (A) Two-dimensional maximum 169 
projection images of three-dimensional Z-stacks (Myo-VIIA in blue and phalloidin in red) are encoded into a high-170 
level representation by a trained convolutional neural network, schematized in (B). (C) The encodings are 171 
transferred to an additional object proposal network which generates bounding boxes of predicted objects. Encoded 172 
crops, based on the predicted object proposals, are classified into outer and inner hair cells, and assigned a score. 173 
(D) Based on these scores and the overlap between boxes, objects are removed, resulting in the algorithm’s best 174 
guess at the location and classification of every object detected on the image.    175 

 176 
With the deep learning model optimally trained, followed by the post-processing steps, we see highly accurate 177 
performance on whole cochlea cell detection (Figure 4). Compared to cochleae analyzed manually we found a 178 
mean 95.2 ± 3.6% true positive accuracy for cell identification and a 0.5± 1% classification error (8 cochlear coils, 179 
each validation shown in Supplementary Figure S2).  This algorithm is robust against tissue idiosyncrasies 180 
such as four rows of outer hair cells (Figure 4C) or atypical inner hair cell locations. Furthermore, when paired 181 
with cell frequency estimation, highly accurate cochleograms may be readily generated by the software (Figures 182 
4F and 4G for IHCs and OHCs, respectively), taking just under a minute to run a full detection analysis.   183 
 184 
Hair Cell Segmentation: To use the toolbox for the analysis of fluorescent signal in hair cells along the length of 185 
the cochlear, rather than hair cell quantification, an alternative pathway and deep learning algorithm was 186 
developed. In a similar approach to Cellpose16,17,21, we elect to train a deep learning model to optimized spatial 187 
embeddings of cells for instance segmentation. The U-Net architecture has been previously utilized successfully 188 
for the performance of various biomedical segmentation tasks 14,17,22-29, and as such we employ a similar 189 
architecture. Recent work on resource constrained segmentation mask has shown that recurrently applying 190 
subsections of the U-Net architecture can improve performance without increasing model size30. Building on this 191 
idea, we recurrently apply each subsection of U-Net to improve performance while limiting the memory 192 
complexity of the model. To account for the anisotropy in our dataset, we employ strided convolutions31 with 193 
different strides at each down sampling step of the architecture. A leaky ReLU32 has been shown to be 194 
advantageous in the performance of residual neural networks33,34 and as such is chosen as the activation function 195 
for our architecture. To maximize usability of the software and maximize flexibility in experimental design, we 196 
train the model solely on the Myo-VIIA fluorescence signal (Figure 5) which were manually annotated in the 197 
Amira software package35.  198 
 199 
An image volume with the Myo-VIIA fluorescence is first median filtered to remove noise and input into the 200 
machine learning model (Figure 6A) which has been trained to generate a set of spatial embedding vectors 201 
(Figure 5B) and a semantic segmentation mask (Figure 6C). From these, pixels likely belonging to a cell are  202 
 203 
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  204 

Figure 4. Validation output of the hair cell detection analysis. A validation output image is generated for each 205 
detection analysis performed by the algorithm. Each image contains visual information on cell detection locations, 206 
cell classifications and cochlear path estimation (if available). Additionally, each detected hair cell’s ID, its location 207 
along the cochlear turn (distance in µm from the apex), and best frequency are embedded. Such an image has 208 
been automatically generated by the software here for an entire cochlea (A). While the vast majority of cells are 209 
accurately detected (B, E), regions of poor performance are also highlighted in C and D. While the algorithm is 210 
robust to four rows of outer hair cells, visual artifacts limit detection accuracy in C while low signal strength may 211 
explain poor detection performance in D. When paired with single cell frequency estimation, accurate cochleograms 212 
of inner hair cells (F) and outer hair cells (G) can be readily generated. This frequency estimation is highly accurate 213 
with a maximum error on 8 different cochleae of 10% of an octave.  214 

 215 
projected from their location in space via the predicted embedding vectors, forming clusters around the centroids 216 
object instances. When predicting the segmentation masks of new cells, their centroids are not known and 217 
therefore must be inferred from the clusters of pixels (Figure 6D). We employ the DBSCAN clustering algorithm 218 
to predict these clusters as it is robust against noise and scales well with large datasets. To improve performance, 219 
we found that down-sampling by a factor of two increases centroid detection speed with negligible loss in 220 
detection accuracy. Pixels at the borders of objects tend to be more poorly projected to object centers, leading 221 
to sparse cluster formation. To reduce this effect, we disregard pixels near the edge of the semantic probability 222 
map via binary erosion. From the resulting centroid prediction, probability maps for each instance a re generated 223 
based on equation (1).  224 

 225 

(1) 
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To avoid double counting cells, we perform non maximum suppression on each instance probability map36. To 226 
ensure each segmentation mask predicted by the algorithm is of a complete cell, we remove any segmentation 227 
masks touching the edge of an evaluated image, in addition to removing any mask whose volume is below a 228 
reasonable value of a cell chosen at 80% of the smallest volume in our training set. While the DBSCAN algorithm 229 
is fast, it relies on tuning parameters to optimally perform. We have chosen these parameters to aggressively 230 
reject loose clusters ensuring each detected cell is properly segmented, with the notable drawback of limiting 231 
the ability of the algorithm to segment every cell. Finally, we disregard cells with mean Myo-VIIA fluorescence 232 
signal intensity levels below 5% of maximum measured value, greatly reducing the number of false positive cell 233 
mask detections. 234 

  235 

Figure 5. Exemplar training data used to train the hair cell segmentation algorithm. To train a deep learning 236 
network to perform an instance segmentation task, 17 confocal Z-stacks containing cochlear hair cells 237 
immunolabeled against Myo7a (top panels) were manually segmented in three dimensions using the Amira 238 
Software package. The resulting 3D cell segmentation masks (bottom panels) were subsequently used for training 239 
of the deep learning model. Presented are single frames from the z-stacks representing individual tiles of the tile 240 
scans, with the tiles taken from a number of different datasets at various cochlear locations. 241 

 242 

  243 

Figure 6: Overview of spatial embedding image segmentation.  Volumetric confocal micrographs (A) are input 244 
to a machine learning model trained to predict spatial embedding vectors (B) in addition to a semantic segmentation 245 
mask (C). Pixels are projected using these vectors into clusters which form the “embedding space” (D) which are 246 
detected using a clustering algorithm. Each cluster gives rise to an object probability map which is used to form an 247 
instance segmentation mask of objects in the original image (E). The performance was fine-tuned by setting the 248 
thresholds in C and D (red “cutoff” lines). Every unique color in E represents a different hair cell.  249 
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In order to evaluate our method of instance segmentation we compared it against two other methods: 1) the 250 
generalist Cellpose algorithm, and 2) a semantic segmentation approach coupled with the watershed 251 
segmentation algorithm. While Cellpose17 was not designed to natively segment volumes, the software provides 252 
a pseudo 3D approach in which the algorithm is applied in 2D over different axis pairs of a volume. While the 253 
segmentation performance is good, many cells were not segmented, in one case as low as only 17% of cells 254 
were segmented (Figure 7). As a generalist algorithm, Cellpose was not trained on examples of hair cells. With 255 
the same training data and deep learning architecture, we trained a deep learning model to perform instance 256 
segmentation which was paired with a volumetric watershed algorithm. The results of this approach were poor, 257 
with numerous detection and segmentation errors (Figure 7). We therefore find our method of instance 258 
segmentation outperform other methods of unsupervised volumetric biomedical instance segmentation.  259 
 260 
While this algorithm relies on a strong Myo-VIIA fluorescence signal to perform, the resulting cell segmentation 261 
mask can be further used to measure cell-specific fluorescence intensity data on any addition channels of 262 
imaging information accompanying the dataset. As such, the main purpose of this segmentation process is to 263 
delineate individual hair cells within their borders by assigning all pixels within a volume (i.e., voxels) representing 264 
each hair cell to a single segmentation mask with a unique ID and illustrated with a unique color on Figure 8. 265 
These masks are then used to measure fluorescence intensity levels across different channels of imaging data 266 

on a single-cell level along the cochlear coil. As each cell has a best frequency automatically inferred as 267 
described above, not only do measurements of whole cell fluorescence intensity levels in 3-dimensional data 268 
become automated, simple, and unbiased, they also allow to present these fluorescence measurements as a 269 
function of location along the tonotopic axis of the cochlea (Figure 8).  270 
 271 

 272 

Figure 7. Example segmentation outcomes of three different segmentation methods evaluated in this study. 273 
Comparison of multiple approaches at volumetric instance segmentation of confocal z-stack of cochlear hair cells. 274 
The spatial embedding approach more accurately detected hair cells compared to U-Net + watershed approach or 275 
the generalist Cellpose tool. 276 

 277 
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 278 

Figure 8: Single-cell fluorescence intensity analysis of hair cells along the cochlear coil. Top, exemplar 279 
maximum projection image of the Z-stack of a mouse cochlear coil analyzed with the hair cell segmentation 280 
algorithm. Bottom, Single-cell volumetric fluorescence intensity measurements of four fluorescence signals 281 
obtained from predicted instance segmentation masks. Paired with cell frequency estimation, the fluorescence 282 
intensity measurements are presented as a function of cochlear location from apex (0%) to base (100%) of the 283 
cochlea. Black dots represent single cell measurements, with an average fluorescence intensity value along the 284 
cochlear turn shown as a color line, with the population histogram presented on the right of each panel.  285 

 286 
Discussion 287 
 288 
Here we present the first fully automated cochlear hair cell analysis pipeline where users can enter multiple 289 
confocal micrographs of cochleae and quickly detect hair cells to generate cochleograms or segment hair cells 290 
enabling fluorescence intensity measurements on a single-cell level. We consider this to represent a 291 
considerable advancement in the unbiased analysis and quantification of hair cell imaging datasets.  292 
 293 
Previous methods of extracting quantitative data from images of hair cells has been varied, and often adapted 294 
for a particular experimental outcome. For example, in hair cell survival studies it is often fastest to manually 295 
count hair cells in order to generate cochleograms37. While the accuracy that can be achieved in this task by a 296 
trained individual is the target of any algorithmic approach, the significant time cost of performing such analysis 297 
makes an automated solution desirable even with rare errors. Automated hair cell counting algorithms already 298 
exist but are less feature rich, limiting adoption. One relies on the homogeneity of structure in the organ of Corti 299 
and fails when irregularities, such as four rows of outer hair cells, are present38. Another may count hair cells but 300 
cannot differentiate between inner and outer hair cells39.  301 
 302 
The presence of a hair cell represents the most basic of quantification and therefore the quickest to do manually, 303 
although still represents a significant burden for large datasets. Image analysis of increasing complexity, such 304 
as counting cells above a fluorescent intensity threshold, as is common in the study of protein expression levels 305 
for example, take considerably longer to the point where they are no longer routinely performed over the entire 306 
cochlea40-45. Analysis of fluorescence levels within hair cells represents even greater complexity. While some of 307 
these analyses are being enabled more efficiently via general use software, such as ImageJ46, the highly 308 
specialized geometry of hair cells limits the effectiveness of these nonspecific tools for use in an automated, 309 
unsupervised manner. Furthermore, to carry out the highly favorable, more sophisticated quantification of 310 
fluorescence in 3D cell volumes, discussed further below, requires volumetric segmentation of cells. Cellpose 311 
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represents the cutting edge of generalist cell segmentation, however, fails to achieve acceptable performance 312 
levels on our datasets.  313 
 314 
The HCAT segmentation pipeline, presented here, offers fully automated volumetric segmentation of hair cells 315 
along the entire length of the cochlea. This task would be prohibitively labor intensive to carry out manually, 316 
however is carried out here at only marginally poorer segmentation performance when compared to manual 317 
segmentation, removing the most significant barrier to analyzing cochlear-wide fluorescence within large 318 
datasets. The most accurate measurement of the fluorescence intensity signal within the cell are, three-319 
dimensional, volume-normalized measurements. It is common for manual analysis methodology to be performed 320 
on a two-dimensional projection of a three-dimensional micrograph, yet these projections can bias results. For 321 
example, a maximum projection, where any pixel is the maximum value of the entire z column of pixels, is 322 
increasingly biased with poorer signal-to-noise ratios. Alternatively, analysis on a summed projection, where any 323 
pixel is the summed value of all underlying z planes, may be particularly sensitive to hair cell orientation or 324 
morphology. The HCAT segmentation pipeline is a tool for the automated quantification of hair cell fluorescence 325 
from three-dimensional imaging data, which can be carried out on full or partial cochlear samples. Furthermore, 326 
in combination with the automated calculation of each hair cell’s predicted best frequency in full cochleae, 327 
determined to be in good agreement with manual estimates of hair cell best frequency using the widely accepted 328 
EPL method, this enables the creation of hair cell fluorescence cochleograms.  329 
 330 
While our models were trained solely using the Myo-VIIa and phalloidin labels, the model can perform on 331 
specimens labeled with other markers, provided they contain both cytosolic hair cell, and stereocilia, labels. An 332 
example of cytosolic hair cell labels might include (i) hair-cell-specific expression of a genetically encoded 333 
fluorescence marker, such as Atoh1-eGFP; (ii) cochlear samples collected from animals following AAV injection 334 
resulting in strong expression of fluorescence markers in hair cells; or (iii) cochlear samples treated with FM1-335 
43 styryl dye known to selectively permeate into hair cells with functional mechanotransduction channel when 336 
briefly applied to live cochlea. An example of stereocilia-specific label is an immunolabeling against a highly 337 
enriched stereociliary protein espin, widely used to label hair cell stereocilia in adult cochlear preparations.  338 
 339 
While our segmentation accuracy offers superior performance compared to other methods, this increase in 340 
segmentation accuracy comes at a cost of cell detection accuracy, as seen by the variability in the cochleogram 341 
seen in Figure 5F, likely due to the limitation in deep learning architecture complexity for volumetric analysis. 342 
Thus, in the HCAT software we offer two distinct pipelines for cell detection and segmentation analysis.  343 
 344 
While our study shows that these algorithms perform well on data collected in-house, their generalizability across 345 
datasets collected by other research groups is pending further validation. Deep learning models tend to 346 
generalize poorly; when evaluated on community-supplied data, HCAT was no exception. While there were 347 
several instances of highly accurate performance on community-provided datasets, the deep learning models 348 
performed sub-optimally in cases where hair cells on community-supplied datasets were visually different than 349 
those in our training data. To our surprise, while the hair cell detection pipeline was trained exclusively with 350 
confocal microscopy data, it performed well on a set of community-provided images of hair cells collected using 351 
widefield fluorescence. All community-provided datasets that resulted in poor HCAT performance will be used to 352 
retrain the model with a prior permission from the owner(s) of the data set.  353 
 354 
Overall, we are planning to expand the training data employing a wider variety of hair cells, such as those from 355 
adult mice and examples of cochlear coils with hair cells following a treatment with ototoxic drugs. Furthermore, 356 
we will endeavor to continually update and maintain the software as well as periodically update the machine 357 
learning model as the state of 3D cell segmentation and cell detection advances. Further development of this 358 
software in the future will provide support for automatic segmentation of adult cochlear tissue, often imaged in 359 
pieces rather than as a contiguous piece of tissue, due to dissection limitations. Additionally, we will continue to 360 
re-train the algorithm as more training data become available, improving its performance over time to a wider 361 
array of tissue preparations and ages.  362 
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 363 
To our knowledge, this is the first whole cochlear analysis pipeline capable of accurately and quickly detecting 364 
or segmenting hair cells. Offering state of the art performance, this hair cell analysis toolbox (HCAT) enables 365 
expedited cochlear image data analysis while maintaining high accuracy. This accurate and unsupervised data 366 
analysis approach will both facilitate ease of research and improve experimental rigor. 367 
 368 
Materials and Methods  369 
 370 
Some of the procedures described below, including the staining authors used to prepare cochlear samples 371 
labeled with four different fluorescent markers as shown in Figure 1 are not required for the use of the presented 372 
hair cell analysis toolbox. They do, however provide an example of a dataset for which the single-cell 373 
fluorescence intensity quantification feature following the application of the hair cell segmentation pipeline can 374 
be utilized.   375 
 376 
Sample preparation, confocal microscopy. Postnatal day (P) 0 C57Bl6 mice of either sex were cryoanesthetized 377 
and injected with AAVs encoding eGFP through the round window membrane of the cochlea as described 378 
previously. The animals were then returned to the dam for recovery. Organs of Corti were dissected at P5 in 379 
Leibovitz’s L-15 culture medium (21083-027, Thermo Fisher Scientific) and fixed in 4% formaldehyde for 1 hour. 380 
The samples were permeabilized with 0.2% Triton-X for 30 minutes and blocked with 10% goat serum in calcium-381 
free HBSS for two hours. To visualize the hair cells, samples were labeled with an anti-Myosin VIIA antibody 382 
(#25-6790 Proteus Biosciences, 1:400) and goat anti-rabbit CF568 (Biotium). Additionally, samples were labeled 383 
with Phalloidin to visualize actin filaments (Biotium CF640R Phalloidin) and with DAPI to visualize cell nuclei 384 
(Molecular Probes DAPI, #D1306). Samples were then mounted on slides using ProLong® Gold Antifade 385 
Mounting kit (P36931, Thermo Fisher Scientific,) and imaged with a Leica SP8 confocal microscope (Leica 386 
Microsystems) using a 63x/1.3 NA objective. Confocal Z-stacks of 512x512 pixel images with an effective pixel 387 
size of 288 nm were collected using the tiling functionality of the Leica LASX acquisition software. All experiments 388 
were carried out in compliance with ethical regulations and approved by the Animal Care Committees of 389 
Massachusetts Eye and Ear.  390 
 391 
Computational Environment: All scripts were run on a custom-built analysis computer running Ubuntu 20.04.1 392 
LTS, an open-source Linux distribution from Canonical based on Debian. The workstation was equipped with an 393 
AMD Ryzen 7 3700X 8-Core processor with 64 GB of RAM. Deep learning computations were accelerated by a 394 
Nvidia 2080Ti graphics card with 11GB of DDR6 video memory. Many scripts were custom written in python 3.8 395 
using open source scientific computation libraries including numpy47, matplotlib48, scikit-learn49. All deep learning 396 
architectures, training logic, and much of the data transformation pipeline was written in pytorch50. All code has 397 
been hosted on github and is available at: https://github.com/buswinka/hcat. 398 
 399 
Training Data Annotation: Two deep learning models were trained on distinct datasets.  400 
 401 
For the hair cell segmentation task, 17 training and 2 validation Z-stacks of cochlear hair cells were selected 402 
from different datasets and ensuring equal representation along the entire length of the cochlea, each containing 403 
~50-100 hair cells. Each image was manually segmented using the Amira Software package (Thermo Fisher 404 
Scientific) running on a Lenovo ThinkPad X1 yoga touchscreen laptop. Cell outlines were delineated by hand 405 
using a stylus and saved with a unique cell ID to create cell masks.  406 
 407 
For the hair cell detection task training data, bounding boxes for hair cells seen in maximum projected z-stacks 408 
were manually annotated in the labelImg software51 and saved as an xml file. For whole cochlear cell annotation, 409 
a “human in the loop” approach was taken, first evaluating the deep learning model on the entire cochlea, then 410 
manually correcting errors.  411 
 412 
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Training: Each deep learning model was trained to accurately perform its designed task. The procedure to train 413 
the Faster R-CNN detection algorithm has been standardized and extensively documented in previous reports6, 414 
while the training procedure for instance segmentation is more involved. A spatial embedding approach has 415 
been shown to be a versatile method to perform biomedical instance segmentation16,17,21,52 , however the optimal 416 
way to train a network for this task is less well defined. We optimize spatial embeddings based on the distance 417 
of each pixel (i) in embedding space from the known centroid (C) of the underlying object. From this distance, 418 
each pixel (i) can be assigned a probability (ϕ) of belonging to an object (k) by equation (1), regularized by the 419 
parameter sigma (σ). Due to the anisotropy of the dataset, we elect to choose a proportionally smaller sigma 420 
when computing the loss in Z compared to X and Y, thereby improving embedding accuracy along that 421 
dimension. For the spatial embedding instance segmentation, the architecture outputs spatial embedding vectors 422 
in addition to a probability map. In the post processing of the spatial embedding, object detection heavily relies 423 
on tight clusters of pixels, therefore it is advantageous to penalize false negative results more heavily than false 424 
positive ones. This contrasts with the probability map, where false negative results should be more heavily 425 
penalized to ensure the detection of cell borders. To rectify these opposing needs, we chose to optimize the 426 
Tversky loss53 of the spatial embedding and semantic probability map with differing penalties for each.  427 
 428 
When using a probability map to aid in watershed segmentation, it is critical the borders of cells are well defined. 429 
To this end, we optimize binary cross entropy loss with a pixel-by-pixel penalty based on the distance from the 430 
border of an object, with pixels closer to the object penalized more heavily. Due to the class imbalance between 431 
background and foreground, optimizing over binary cross entropy alone leads the model to a local minimum 432 
where the entire output is predicted to be background. Therefore, we additionally include the dice coefficient in 433 
loss calculation.  434 
 435 
For both tasks, the deep learning architectures were trained with the Adam optimizer with a learning rate starting 436 
at 1e-4 and decaying based on cosine annealing with warm restarts with a period of 100 epochs. When training 437 
the model for the spatial embedding task, we initialize sigma to be large values, and progressively decay by half 438 
at set epochs. Due to the labor-intensive nature of the manual segmentation workflow, we are limited in the total 439 
number of training volumes we can generate. In cases with a small number of training images, deep learning 440 
models tend to fail to generalize and instead “memorize” the training data. To avoid this, we make heavy use of 441 
image transformations which randomly add variability to our images and synthetically increase the variety of our 442 
training data sets54 (Supplementary Figure S1).  443 
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Code availability.  452 
All code has been hosted on github and is available at: https://github.com/buswinka/hcat. 453 
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 576 
 577 

Supplementary Figure S1: Training data augmentation pipeline. Training images for each deep learning 578 
approach underwent identical data augmentation steps, increasing the variability of our dataset and improving 579 
performance. Each of these augmentation steps were probabilistically applied sequentially (left to right).   580 
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 584 
 585 

Supplementary Figure S2: Validation of hair cell detection analysis and location estimation pipeline. Whole 586 
cochlear turns (A) were manually annotated and evaluated with the HCAT detection analysis pipeline. Each analysis 587 
generated highly accurate cochleograms (B), reporting the ‘ground truth’ result obtained from manual segmentation 588 
(dark lines) superimposed onto the cochleogram generated from hair cells detected by the HCAT detection analysis 589 
(light lines), reporting highly accurate results. The frequency estimation error was then calculates as an octave 590 
difference to quantify the accuracy of predicted frequency estimation for every hair cell vs their ground truth 591 
frequency (C). Optimal cell detection and non-maximum suppression thresholds were discerned via a grid search 592 
by maximizing the true positive rate penalized by the false positive and false negative rates (D).  Black lines on the 593 
ROC curves (E) denote the optimal hyperparameter value.  594 
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