Rescue of hearing by adenine base editing in a humanized mouse model of Usher syndrome type 1F

Citation:

Peters CW, Hanlon KS, Ivanchenko MV, Zinn E, Linarte EF, Li Y, Levy JM, Liu DR, Kleinstiver BP, Indzhykulian AA, Corey DP. Rescue of hearing by adenine base editing in a humanized mouse model of Usher syndrome type 1F. Mol Ther. 2023 Aug 2;31(8):2439-2453. doi: 10.1016/j.ymthe.2023.06.007. Epub 2023 Jun 12. PMID: 37312453; PMCID: PMC10421997. 

Publisher’s Version

Download PDF:

PDF1.25 MB

Abstract:

Usher syndrome type 1F (USH1F), characterized by congenital lack of hearing and balance and progressive loss of vision, is caused by mutations in the PCDH15 gene. In the Ashkenazi population, a recessive truncation mutation accounts for a large proportion of USH1F cases. The truncation is caused by a single C→T mutation, which converts an arginine codon to a stop (R245X). To test the potential for base editors to revert this mutation, we developed a humanized Pcdh15R245X mouse model for USH1F. Mice homozygous for the R245X mutation were deaf and exhibited profound balance deficits, while heterozygous mice were unaffected. Here we show that an adenine base editor (ABE) is capable of reversing the R245X mutation to restore the PCDH15 sequence and function. We packaged a split-intein ABE into dual adeno-associated virus (AAV) vectors and delivered them into cochleas of neonatal USH1F mice. Hearing was not restored in a Pcdh15 constitutive null mouse despite base editing, perhaps because of early disorganization of cochlear hair cells. However, injection of vectors encoding the split ABE into a late-deletion conditional Pcdh15 knockout rescued hearing. This study demonstrates the ability of an ABE to correct the PCDH15 R245X mutation in the cochlea and restore hearing.

Notes:

Last updated on 11/19/2019